
Lecture #8 : contextual/linear bandits
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This is equivalent to the following setting with Ar = <4(G/CH//ke) :

Setting 2/ linear bandits
For each round t= 1.....T :

· agent observes decision out Ar Cir

· agent chooses action ar Ar an is measurable mat.
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we want to build an adaptation of UCB for limean bandith
/
called

Lin U2B -

The idea is to construct confidence sets En auch that

00I with high probability and pick of each round

with to assmall)
as e

agrato
max La

. Of Cas possible
OECr



-

VaB score of arm a

Before the confidence net, what is the estimate of 8 ? (in impinial

Regularised bast. synares estimator :

= agrin-

· %0 : the pretty factor Ca regularisation paramete
↓50 ensures uniqueness of the mincisse

we can indeed easily check that :
=Nas whee =a as

M

Emysymetric , perite definitomatis MCM* and Vester UCRY
, we demote

Ilully : = (ut Mal

Tem (linea bandits concentration)
Fr

any
56 (0

.1)Hei and 490 :

P In-ove,on F



The proof relies on
the following concentration leme

Lemma

Let Su= as

En anyCOVEN and TECO

(115/20, 2h +en (

Rogthe therem (band on Comme

↑

Note thatf = W (Sutasas o
= Visu + Vi(V-)

e

S Il-o = 1 se-volum

5 IIVSellve + Irolur

= Il Sullu + 10%ven
-

↑' Il 101

* Ilsellvi + T 118%2. *Krin (V)-2 Dol,

[ !
-
10%



~Toog of the lemma
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Comments :
-

. distribution free bound.
· ifAo is finite ,

and the camefu evyt, we can geta le instance

dependent bound .
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Indeed / Vr = Voe tanan = Num(I +Nanann
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LinUCB has regat B
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can we do better ?

Theorem (minimax lower bound linear bandit

Let tr = 52
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· Here m= and L = r . Sofa TSd , LinUCB is optimal , up
to a lit term .

Proof reliss on the following Cemma
-

which is the equivalent
of the fundamental inequality for linear bandits .
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Proof of the Therem
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Consider such a O in the following.
Then we can lown bound the regut on 0 :
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