Lecture 4 7: $\sqrt{k T}$ distrubation pree bound and bandits with a continuum foums

We have ohown. (im ceccues serion \#4) a mimax lown bound of oder $\sqrt{k T}$ for atocturice - diotubution free uppere bounts of odder $\sqrt{k T \ln T}$ for VCB andSE.

Conwe get a $\sqrt{\mathrm{KT}}$ upper bound?

MOSS algnithur (Minmax Optimal stantegy in the Strectatice are of bint preleman) Index policy ulying on $\quad U_{k}(r)=\hat{\mu}_{k}(t)+\sqrt{\frac{1}{2 N_{k}(t)} \ln _{+}\left(\frac{F}{K N_{k}(H)}\right)}$ where $l_{n_{+}}=\max \left(l_{n}, 0\right)$
ie algo is defined as
For $r=1, \ldots, k$: pall $a_{r}=t$
For $r \geqslant K+1$: pull $a_{r} \in \underset{a}{\operatorname{argmax}} V_{a}(t-1)$

Difference with UCB:

$$
\begin{aligned}
& \text { bonus } \\
& \sqrt{\frac{2 \ln t}{N_{k}(t)}} \text { Vs } \sqrt{\frac{l_{n_{+}}\left(r / N_{k}(\theta)\right)}{2 N_{k}(t)}}
\end{aligned}
$$

Therem MOSS stiufinifor bandit model $\Delta=P((0,1))$

$$
\text { tup }_{v=D^{k}} \quad R_{T}(\text { Toos, }, v) \leqslant K-1+45 \sqrt{K T}
$$

\rightarrow mininax ophimal, up to constant factor (the 45 cons bot can fillle impseded)

Proof: Fuot dep lita $k+1, U_{\beta^{*}}(r-1) \leqslant U_{a_{r}}(r-1)$ by lefnof algowthem

Secondstep, continal feach $\mathbb{E}\left[\mu^{*}-V_{a^{\prime}}(t)\right]$ tem by $20 \sqrt{\frac{K}{F}}$ (far $3 k$) forthet:
where

$$
x_{1}=\beta^{-1} \frac{r}{k}
$$

$$
\text { frobu furd } \beta_{>1}
$$

$$
\begin{aligned}
& \mathbb{E}\left[\mu^{+} \cdot U_{Q^{+}}(r)\right] \leqslant \mathbb{E}\left[\left(\mu^{*} \cdot U_{Q^{*}}(r)\right)_{+}\right] \\
& \leqslant \sum_{\rho=0}^{+\infty} \mathbb{E}\left[\left(\mu^{*}-U_{k^{c}}(h)\right)_{+} 1_{\left\{N_{k^{\prime}}(t) \in\left[x_{p+1}, x_{k}\right\}\right.}\right] \\
& +\mathbb{E}\left[\left(\mu^{*}-v_{k^{*}}(k)\right)_{+} 1_{\left.\left\{N_{k^{\prime}(t)}\right), x_{0}\right\}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sqrt{k T}+\sum_{r=1}^{T} \mathbb{E}+1\left(V_{\text {ar }}\left(r_{1}-1\right)-p_{a r}-\sqrt{\frac{T}{T}}\right)_{+}\right]
\end{aligned}
$$

Lemma: $\mathbb{E}\left[\left(\mu^{*}-\hat{\mu}_{a_{0}}(r)-\varepsilon\right)+\mathbb{1}_{\left(\mu_{1}(t) \geqslant n_{0}\right]}\right] \leqslant \frac{1}{\sqrt{n_{0}}} e^{-2 n_{0} \varepsilon^{2}}$
Roof the lemma:

$$
\begin{aligned}
\mathbb{E}\left[\left(\mu^{*}-\hat{\mu}_{a_{0}}(r)-\varepsilon\right)+\mathbb{1}_{\left(N_{\mu^{\prime}}(t) \geqslant n_{0}\right)}\right] & =\int_{0}^{+\infty} \mathbb{P}\left(\mu^{\sigma}-\hat{\mu}_{\mu^{*}}^{*(n)}-\varepsilon \xi u \text { and } N_{k^{r}}(t) \geqslant n_{0}\right) d u \\
& =\int_{0}^{+\infty} \mathbb{P}\left(Z_{r}^{*} \geqslant(\varepsilon+u) N_{k^{*}}(t) \text { and } N_{k^{*}}(t) \geqslant n_{0}\right) d u
\end{aligned}
$$

and fo all $x \in \mathbb{R}, \quad S_{x, r}=e^{x z_{r} \cdot \frac{x^{\prime}}{8} N_{k^{\prime}}(t)} \quad$ is a mapamatingale
This by Markov-Cherroff, we continue the bounding is, for $x>0$

$$
=\int_{0}^{+\infty} \mathbb{P}\left\{e^{x z_{r}^{F}-\frac{x^{2}}{8} N_{a^{\prime}}(r)} \geqslant \exp \left(N_{a^{r}}(r)\left(x(z+u)-\frac{x^{2}}{8}\right)\right) \operatorname{m}\left(N_{k}(r) z_{n} \mid d u\right.\right.
$$

$x=4(\varepsilon+v)$

$$
\leqslant \int_{0}^{+\infty} e^{-2 n_{0}\left(c^{\prime}+u^{2}\right)} \mathbb{E}\left[S_{\psi(t+v), r} \mathbb{1}_{\left\langle N_{c}(d) \geqslant n_{u}\right)}\right] d u \quad \begin{aligned}
& \text { we } Q_{\text {now }} \\
& \\
& \\
& \mathbb{E}\left[S_{\psi((t), r),}\right] \leqslant 1
\end{aligned}
$$

So all in al

Going bact to the main proof:

$$
\begin{aligned}
& \mathbb{E}\left[\mu^{t}-U_{a r}(r)\right] \leqslant \sqrt{\frac{K}{t}}+\sum_{l=0}^{+\infty} \frac{1}{\sqrt{x_{e+1}}} e^{-2 x_{+1} \xi_{l}^{2}} \\
& \frac{1}{\sqrt{x_{1+1}}} \operatorname{xpp}\left(\cdot 2 x_{0+1} \cdot \frac{1}{2 x_{p}} \ln \left(\frac{r}{k_{x+1}}\right)\right) \\
& =\frac{1}{\sqrt{\lambda+2}} \exp \left(-\frac{1}{\beta} \cdot l \ln (\beta)\right) \\
& =\sqrt{\frac{K}{F}} \beta^{\frac{+11}{2}} \exp \left(-\frac{l}{\beta} \ln (\beta)\right) \\
& =\sqrt{\frac{K}{r}} \beta^{\frac{1}{2}+e\left(\frac{1}{2}-\frac{1}{\beta}\right)} \rightarrow \text { we rent } \beta \in(1,2)
\end{aligned}
$$

Taking y $\beta=\frac{3}{2}: \mathbb{E}\left[\mu^{+} \cdot V_{a^{\prime}}(1)\right] \leqslant \sqrt{\frac{K}{r}}+\sqrt{\frac{K}{r}} \beta^{1 / 2} \cdot \sum_{l=0}^{+\infty}\left(\beta^{\left(\frac{1}{2} \cdot \frac{1}{\beta}\right)}\right)^{l}$

$$
\begin{aligned}
& =\sqrt{\frac{K}{r}}(1+\underbrace{\frac{\sqrt{3}}{2} \cdot \frac{1}{1-\alpha}} \\
& \leqslant 19 \text {. with } \alpha=\left(\frac{3}{2}\right)^{\left(\frac{1}{2} \cdot \frac{2}{5}\right)} \in(0,1) \text { 衣 }
\end{aligned}
$$

thind otep: $\sum_{t=k+1}^{T} \mathbb{E}\left[\left(U_{\text {ar }}(r-1)-\mu_{\text {or }} \cdot \sqrt{\frac{K}{T}}\right)_{t}\right]$ is $\leqslant 4 \sqrt{K T}$

$$
\begin{aligned}
& =\sum_{r=1}^{T-1} \mathbb{E}\left[\left(v_{a_{r-1}}(k)-\mu_{r r+1}-\sqrt{\frac{F}{F}}\right)_{+}\right] \\
& \sum_{r=\pi}^{T-1} \mathbb{E}\left[\left(U_{a_{r-1}}(r)-\mu_{r+1}-\sqrt{\frac{F}{T}}\right)_{+}\right]=\sum_{k=1}^{K} \sum_{i=1}^{T} \sum_{r=K}^{T-1} \mathbb{E}\left[\left(U_{k}(r)-\mu_{a}-\sqrt{\frac{K}{T}}\right)+\mathbb{1}_{\left\langle a_{r-1}-1-k\right.} \mathbb{1}_{\left\langle N_{k}(t)=1\right]}\right]
\end{aligned}
$$

and get thengore the uppu bound

Also $\sum_{i=1}^{\left.L^{T} / k\right\rfloor} \sqrt{\frac{1}{2 l} \ln \left(\frac{T}{k P}\right)} \leq \int_{0}^{x^{T / k J}} \sqrt{\frac{1}{2 x} \ln \left(\frac{T}{k x}\right)} d x$

$$
\begin{aligned}
& \leqslant \sqrt{\frac{T}{2 K}} \int_{1}^{+\infty} u^{-3 / 2} \sqrt{\ln (x)} d u
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{T}{2 K}} \int_{0}^{2 v^{2} e^{-\frac{v}{2}} d v} \underbrace{}_{\text {vamana } q} d \\
& =\sqrt{\pi} \sqrt{\frac{T}{\pi}}
\end{aligned}
$$

summarying, we thowed oo for (in thind otep): w will dow that $\leqslant \sqrt{\frac{R}{A}} \sqrt{\frac{\pi}{E}}$ foreach

$$
\begin{aligned}
& +k \cdot \sqrt{\pi} \sqrt{\pi / k}
\end{aligned}
$$

we resort again to $z_{k, t}=N_{a}\left(\hat{\mu}_{k}(r) \cdot \mu_{k}\right)$ martingale

$$
\begin{array}{r}
S_{x, t}^{(2)}=e^{x z_{4, t} \cdot \frac{\lambda^{2}}{8} N_{a}(t)} \text { sugumatugals } \\
\text { where } x-4\left(\sqrt{\frac{K}{T}}+n\right)
\end{array}
$$

Fo each b,

$$
\begin{aligned}
& \sum_{i=1}^{T} \sum_{r_{i} K}^{T \cdot 1} \mathbb{E}\left[\left(\hat{\mu}_{k}(n)-\mu_{Q} \cdot \sqrt{\frac{K}{T}}\right)+\mathbb{1}_{\left|a_{r-1}-l\right| l} \mathbb{1}_{\left\{N_{l}(n)=1 \mid\right.}\right]= \\
& \sum_{l=1}^{T} \sum_{r=k}^{\pi-2} \int_{0}^{+\infty} \mathbb{P}\left(x z_{a, t}-\frac{x^{2}}{\gamma} N_{e}(t) \geqslant N_{a}(t)\left(x\left(u+\sqrt{\frac{K}{F}}\right)-\frac{x^{2}}{8}\right) \quad \text { and } a_{r+1}=k \text { and } N_{Q}(t)=\rho\right) d u
\end{aligned}
$$

issue: depends on t...
but can be replaced in rome sense, by $S_{n, 0}^{(a)}=1$.

$$
\begin{aligned}
& \leqslant \sum_{l=1}^{T} \int_{0}^{+\infty} e^{-2 \rho\left(u^{2}+\frac{K}{T}\right)} \mathbb{E}\left[\sum_{k=k}^{T-1} S_{x, i}^{(a)} \mathbb{1}_{(a v+1=a)} \mathbb{H}_{\left(N_{a}(n)=l \mid\right.}\right] d u \\
& \leqslant \sum_{l=1}^{T} e^{+\infty} e^{-2 \rho\left(u^{2}+\frac{K}{T}\right)} \mathbb{E}\left[S_{x}^{(a)}, \tau_{\rho}\right] d u
\end{aligned}
$$

where $\bar{\tau}_{p}=\inf _{\operatorname{ing}}\left\{r \in[T]: \begin{array}{c}a_{r+1}=k \text { ard } \\ N_{a}(t)=l\end{array}\right\} \wedge T$

τ is bsunded \longrightarrow we can apply optional otoppeng theovem ("thioeeme d'anit de
s tent

$$
\begin{aligned}
& \mathbb{E}\left[S_{x, \tau_{p}}^{(a)}\right] \leqslant \mathbb{E}\left[S_{x, 0}^{(a)}\right]=1 \\
& \text { So: } \sum_{e_{1}}^{T} \sum_{r=k}^{T-1} \mathbb{E}\left[\left(\hat{\mu}_{k}(n)-\mu_{a} \cdot \sqrt{\frac{K}{T}}\right)+\mathbb{1}_{\left|a_{r-1}-k\right|} \mathbb{1}_{\left\{N_{l}(n)=1 \mid\right.}\right] \leqslant\left.\sum_{\mid=0}^{T}\right|_{0} ^{+\infty} e^{-2 \rho\left(u^{2}+\frac{K}{T}\right)} d u
\end{aligned}
$$

$\leqslant \sum_{l=1}^{\infty} \frac{1}{\sqrt{l}} e^{=2 l \frac{K}{T}}$ simitento th mtumuthita lemma in

$$
\begin{aligned}
& \leqslant \int_{0}^{\infty} \frac{1}{\sqrt{x}} e^{-2 x \frac{K}{T}} d x=\sqrt{\frac{T}{2 K}} \int_{0}^{+\infty} \frac{e^{-u}}{\sqrt{u}} d u \\
& =\sqrt{\frac{T}{2 K}} \cdot 2 \int_{0}^{+\infty} e^{-v^{2}} d v=\sqrt{\frac{\pi}{2}} \sqrt{\frac{T}{K}} \quad \frac{d u}{\sqrt{u}}=2 d r
\end{aligned}
$$

Semmauzerg:

$$
\begin{aligned}
& K \sqrt{\frac{\pi}{2}} \sqrt{\frac{T}{K}}+\sqrt{\pi} \sqrt{K T} \\
& K \quad \sqrt{K T}, \sqrt{\pi}\left(1+\frac{1}{\sqrt{L}}\right) \leqslant 4 \sqrt{K T}
\end{aligned}
$$

Geneal conclusion
Summoning alloteps, we bound the rect by

$$
\begin{aligned}
K \cdot 1+\left(\sum_{r=k+1}^{T} 20\left(\sqrt{\frac{K}{r-1}}\right)+\sqrt{K T}+4 \sqrt{K T}\right. & \leqslant K-1+5 \sqrt{K T}+20 \int_{0}^{T} \sqrt{\frac{K}{0}} d s \\
& =k-1+45 \sqrt{k T}
\end{aligned}
$$

Bandits with cor binuurs of cns
stochastic bandits: what about arms indeed by a continuer?

Sebring 1 Arms indexed by $x \in A$, when A is rome pessblly longe set. With each arm $x \in A$ is associated a probability distribution v_{x} oven \mathbb{R} st $\mathbb{E}\left(v_{x}\right)$ exits At each sound, the decision maker picks $a_{r} \in A$, gets a word Y_{t} drawn at random according $t_{0} v_{a_{1}}$ (given ar); and then is the only feedback the gits.
Difintion $f: x \in A \longrightarrow \mathbb{E}\left(\nu_{x}\right)$ is the man-payoff function.
(gavis)-Regat.

$$
R_{T}=T \sup _{x(A)} f(x)=\mathbb{E}\left[\sum_{r=1}^{T} Y_{r}\right]
$$

Setting? [oprial care] \rightarrow noisy $p^{\text {stimulation of a function }}$
we fix $f \mid A \rightarrow \mathbb{R}$ The noise is given by a requence of id random Variables $\varepsilon_{1}, \varepsilon_{2}, \ldots$ when $a_{r} \in A$ is picked, $Y_{F}=f\left(a_{r}\right)+\varepsilon_{r}$
 have the save hire, given by the connoon dotutubution of the ε_{j})
we of course need conditions fo the negev t t_{0} be minimised
Definition Let F be a set of postie bandit problems $z=\left(v_{n}\right)_{n \in A}$. The regut can be controlled (in - non-umfoum nay) against F if: there exists aotiatagy alt. $\forall v \in F, R_{T}=\sigma(T)$

Ex: $A=\{1, \ldots, K]$ and $F=P([0,1])^{K} \quad \rightarrow$ UCB does the j d.
Counten-example: $A=[0,1]$ and $\underbrace{F=P\left(\left[\gamma_{n}\right)_{t \in(, 1,1]}\right.}_{\text {all bandit pollens }}$

Inde! Consider $\left(J_{0}\right)_{x \in[0,1])}$ the bandit putter in which each our x is associated with the Dirac mass on 0 .
Sine polobiditity dustribetiooms can only have at most countably many atoms, $\varphi=\left\{x \in[0.1] ; \exists f \mid \mathbb{P}(\right.$ ar $=x)>0$ under $\left.\left(\delta_{0}\right)_{x \in(0,1)}\right)$ is countable. In puticorlan, we can consider $x_{0} \in[0,1] \mid \rho$. The otwatigy then behaves the rave under the publem

$$
\left(v_{x}^{\prime}\right)_{x+[0,1)} \text { in which }\left\{\begin{array}{l}
V_{x=\delta}^{\prime}=\delta \quad \forall x \neq x_{0} \\
v_{x_{0}}^{\prime}=\delta_{1}
\end{array}\right.
$$

With posen 1, the otratregy never pulls x_{0}.
Therefore, $Y_{F}=0$ as for any r and $R_{T}=T$.
Actually, continuity is sufficient for the ugut to be controlled as long as A in not to large.

Theocem lit A beametric space and let $F^{\text {eot }}$ be the at of lanalt potbens $\left(v_{x}\right)_{x c h}$ with $\quad \forall x, v_{x}$ is adictibution over $[0,1]$

- a continvaces mear-poryff function $f: x \mapsto \mathbb{E}\left(v_{x}\right)$

The regut can be controlud against $F^{\text {ant }}$ if and only If A s appoale
Coollony let Abs anyet, let $F^{\prime \prime}$ be the family of ll bendt models $\left(v_{)_{x+1}}\right.$ with distrubutions v_{n} om $[0,1]$. Then the ngut againat $F^{\prime \prime}$ can be contaoled ifond only if A is at most countable.
Befor we pave thase falts, coriden the following wou concecte example, in which, by strengtheneng the regulaity requinement on the mean payoff function, we cas veen gatrotes. (sec exacuse restion \#5)

Proof of the conollany: we endow A with the dioncte Topology, i.e, close the diotance $d(x, y)=\mathbb{1}_{x \neq y}$. then

1. All applications $f: A \rightarrow \mathbb{R}$ are continueus
2. A is separable if and only if A in at most countable

Pooof of the Theorem It ulies on the possibity a unpesisibity ofurfam expration of the ums.

1) If Aisspanable: let $\left(x_{n}\right)_{\text {nie }}$ be acollection of poits in A that is dense. we pick actions in a twingulan fonstion:

Regine 1: UCB band on $x_{1} x_{2}, \quad a_{1}^{(2)}, \ldots, a_{4}^{(1)}$
Reyine r : VCB based on $x_{1} \ldots x_{1} x_{r+1}$: ${ }_{\text {puhtal }}$: $a_{1}^{(r)} \ldots a_{(r+1)^{c}}^{(r)}$

In regime r :
*tarts at tame

$$
(r+1)^{2} \max _{s<r} f\left(x_{s}\right)-\mathbb{E}\left[\sum_{r=s+1}^{s+(+1)^{\prime}} y_{r}\right] \leqslant c \sqrt{r^{3} \ln r}
$$

duitubbation free band

$$
s_{r}+1=2^{2}+3^{2}+\cdots+r^{2}+1
$$

Now, let $\varepsilon>0$ and $\operatorname{let} \tilde{r}_{\varepsilon} \in \mathbb{N}$ shh. $f\left(x \tilde{r}_{\varepsilon}\right) \geqslant \sup _{A} f-\varepsilon$ ($\tilde{r_{c}}$ exits by apaibicity of A and continuity of f)

In particular, $\max _{\delta \leqslant \hat{r}_{c}} f\left(x_{x}\right) \geqslant \operatorname{sunp}_{A} f-\varepsilon$
we denote by r_{T} the index of the regime there T lies
we have that S_{r} is ofverden of r^{3}
so r_{T} of of the oder of $T^{1 / 3}$, ie $r_{T}=O\left(T^{1 / 3}\right)$.
The regut can be decomposed (for T large enough $)$ as

$$
\begin{aligned}
& R_{T}=T \sup f-\mathbb{E}\left[\sum_{r_{i=1}}^{Y_{r}} Y_{T}=\right.\text { sum of the rebuts of each regime }
\end{aligned}
$$

$$
\begin{aligned}
& \text { } \leqslant T \varepsilon+O\left(r_{T}^{5 / 2} \sqrt{h_{T}}\right) \\
& =T \varepsilon+O\left(T^{5 / 6} \sqrt{\ln T}\right)
\end{aligned}
$$

All in all, tumaup $\frac{R_{T}}{T} \leqslant \varepsilon \quad$ which in tue for ry $\varepsilon>0$

$$
\text { Hat is } \lim \frac{R_{T}}{T}=0
$$

2) If A is not reparable

- We use the following characterisation of seporabity (which rebec on Ion'slemma).

A motion spue x is separate of and only if it contains no uncountable subset D st. $p=\operatorname{lif}\{d(x, y): x, y \in D \mid>0$.

In particular, if A is not separable, there exste an uncountable subset $D C A$ and $\rho>0$ such that the ball $B(a, 1 / 2)$ with $a \in D$ ane all degoint.
\Rightarrow No poobatietty distinction oven A con give a positive mass to all these balls.

- we consider the bandit models $v^{(n)}$ inducing mean-payoff function

$$
f_{r}^{(a)}: x \in A \longrightarrow\left(1-\frac{d(x, a)}{\rho^{\prime}}\right)+\quad \text { in particular, } \nu_{x}^{(\omega)}=\delta_{0} \text { for } x \notin B(x, p / 2)
$$

we proceed as in the example showing the necessity of continuity when $A=[0,1]$ and consider the bandit model $\left(\delta_{0}\right)_{x \in A}$, as well as any stantegy and the lavs induced by the a_{r} under the model : Set λ_{r} be the lowof ar under $\left(\delta_{0}\right)_{x \in A}$ and let $\lambda=\sum_{r=3} \frac{1}{r^{r}} \lambda_{r}$

As only countably many balls can have aportive mass under λ, there exists a sit $\lambda(B(a, p))=0$, the is .t.

$$
\forall r>1, \mathbb{P}\left(a_{r} \in B\left(a, p(2) \text { under }\left(\delta_{0}\right)_{x+1}\right)=0\right.
$$

The covoidend strategy is therefore such that the ar have the save distribution under $\left(\delta_{0}\right)_{x \in A}$ and $v^{(a)}$. In particular, $\mathbb{E}\left[\sum_{k=1}^{T} y_{c}\right]=0$ in both cases, but in the lat es case $\operatorname{unp}_{A} f^{(a)}=1$, no that $R_{T}=T$ against $\nu^{(a)}$. The ages is thus not contaislld against $v^{(a)} \in \mathcal{F}^{\text {cat }}$.

