Lecture \#6: lower bound
Recall bandit setting

- To each arm k is associated a probability distribution $v_{k} \in D$
- Dis the bandit model ($\left.D \subset P_{1}(R)\right)$
- A bandit instance is denoted by $v=\left(v_{k}\right)_{k \in[K]}$
- Good minimise the egret, which con le uwitten an

$$
R_{T}=\sum_{k=2}^{k} \Delta_{Q} \mathbb{E}\left[N_{k}(T)\right]
$$

Bounding the ugut x bounding $\mathbb{E}\left[N_{k}(T)\right]$ What with best positibl (by an agearthan) bounds?

- what is a randomised otrotagy π ? a sequence of mesomable functions $\left(\pi_{r_{r}} r_{r 1}\right.$ with

Den| - a strategy is connaistent writ a model D if, fo all bander unotances $v \in D^{k}, \forall \propto \in(0,1], \forall k, r, D_{a}>0$,

$$
\mathbb{E}\left[N_{a}(T)\right]=o\left(T^{\alpha}\right)
$$

fo well behared modelss then exiot consistint otrategies ef $U C B$ with $D=P(0,1)$.
(cosyaybske)

- Iypial bounds for goosd strategies

$$
\forall v \in D^{K}, \forall k \cdot \Delta \mid \Delta_{k}>0, \operatorname{limanp}_{T \rightarrow \infty} \frac{\mathbb{E}\left[N_{k}(T)\right]}{\ln T} \leqslant C_{k}(\nu)
$$

- optonal such Term: $c_{h}(v)=\frac{1}{\operatorname{King}\left(v_{e}, \mu^{v}, D\right)}$ pabber dyandent term
whe $K_{\text {uf }}\left(v_{k}, \mu^{*}, D\right)=\inf \left\{K L\left(v_{k}, v_{k}^{\prime}\right) \left\lvert\, \begin{array}{l}v_{L}^{\prime} \in D \\ \mathbb{E}\left(v_{k}^{\prime}\right)>\mu^{*}\end{array}\right.\right\}$ we will now prove one part of thispotimatry: a lown baund.
Therem (Lai and Roblbens, 1985,
Fo all bandit moulls $D \in P_{1}(\mathbb{R})$,
Formy conositent thukegy wot D,
fo any bandit inetance $v \in D^{k}$,
fon all tuloptional aums $k\left(i u \Delta_{h}>0\right), \quad \lim _{T \rightarrow \infty} \frac{\mathbb{E}\left[N_{a}(T)\right]}{\ln T} \geqslant \frac{1}{\operatorname{kng}_{\operatorname{ng}}\left(v_{n}, \mu^{-}, D\right)}$

Cnoflory
 $v \in \boldsymbol{D}^{x}$

$$
\liminf _{T \rightarrow+\infty} \frac{R_{T}}{\operatorname{lnT}_{T} \geqslant \sum_{a_{a}}^{\Delta_{n}>0} \sum_{0} \frac{D_{k}}{K_{u f}\left(\nu_{a}, \mu^{*}, D\right)}}
$$

Toparke this thous (andothe lave bounds) i we need the following ferndoumental inequality
Notation: for a strategy π_{1} we ante $H_{r}=\left(U_{0}, X_{a_{1}}(1), U_{1}, X_{a}(2), \ldots, X_{a}(H), U_{r}\right)$ Real How $a_{\text {tit }}$ is $\sigma\left(H_{r}\right)$-measurable. dupendonont
Lemma: (fundamental ingenuity for otochaot tic bandits)
Fo all bandit problems $v=\left(v_{V}\right)_{t(0) \in}$ and $v^{\prime}=\left(v_{k}^{\prime}\right)_{a \in O S}$ in D^{K} with $v_{L}<v_{2}^{\prime} f_{n}$ all)
fo all strategies and random vaviblles Z raking values in $[0,1]$ that are $\sigma\left(H_{T}\right)$-mosuable,

$$
\begin{aligned}
\sum_{a=1}^{\alpha} \mathbb{E}_{2}\left[N_{a}(T)\right] K L\left(\nu_{a}, v_{a}^{\prime}\right) & =K L\left(\mathbb{P}_{\nu}^{H_{T}}, \mathbb{P}_{\nu} H_{r}^{\prime}\right) \\
& \geqslant K L\left(B_{u}\left(\mathbb{E}_{l}[z)\right), B_{u}\left(\mathbb{E}_{v^{\prime}}[z]\right)\right)
\end{aligned}
$$

dependence instvatigy π hidden everywhere here.
Note: This lemma soul bees to perform an inpliat change of mesons
in the proof of the theorem.
Proof of the theorem (based on the lemma)

$$
\left.K_{i f}\left(\nu_{k}, D, \mu^{\theta}\right)=\operatorname{ing}\left|\operatorname{KL}\left(v_{a}, v_{a}^{\prime}\right)\right| v_{a}^{\prime} \in D, v_{a} \ll v_{a}^{\prime} \text { and } \mathbb{E}\left(v^{\prime}\right)\right\rangle \mu^{\star} \mid
$$

convention inf $\phi=+\infty$
This is why we will:

$$
- \text { fix } \partial, \text { tody } \pi, v \text { and } k \text { st. } \Delta_{k}>0
$$

- fir an alternative model v^{\prime} with

$$
\begin{cases}v_{i}^{\prime}=v_{i} & \text { fall } i \neq l \\ v_{k}^{\prime} \text { ot. } & v_{a}^{\prime} \in D_{1} \quad v_{k}<v_{k}^{\prime} \text { and } \mathbb{E}\left(v_{k}^{\prime}\right) \geqslant \mu^{0}\end{cases}
$$

That u sand v orly differ at A, the unique option arm in v^{\prime}.

- Toke $Z=\frac{N_{a}(T)}{T}$ which u $[0,1]$-valued

$$
\sigma\left(H_{T}\right) \text {-masusuable }
$$

Our fundamental inequality (lemma) yields, since rand V only differ at β :

$$
\begin{aligned}
& \mathbb{E}_{v}\left[N_{a}(T)\right] K l\left(v_{k}, v_{u}^{\prime}\right) \geqslant K L\left(B_{u}\left(\mathbb{E}_{\nu}\left[\frac{N_{v}(T)}{T}\right], B_{v}\left(\mathbb{E}_{v} \cdot\left[\frac{N_{v}(T)}{T}\right]\right)\right)\right. \\
& \geqslant \geqslant \ln (2)+\left(1-\mathbb{E}_{\nu}\left[\frac{N_{k}(T)}{T}\right]\right) \ln \left(\frac{1}{1 \cdot \mathbb{E}_{v} \cdot\left[\frac{N_{N} T T}{T}\right]}\right) \\
&
\end{aligned}
$$

minded $K L(\operatorname{Ran}(p), \operatorname{Bec}(q))=p \ln \left(\frac{p}{\rho}\right)+(1-p) \ln \left(\frac{1-p}{1-p}\right)$

$$
=p \ln \left(\frac{1}{q}\right)+(1-p) \ln \left(\frac{1}{1-q}\right)+(p \ln (p)+(1-p) \ln (1 \cdot p))
$$

$$
\begin{gathered}
\geqslant 0 \\
\left.\left.\geqslant-\ln 2+(1-p) \ln \left(\frac{1}{1-1}\right) \text { fr all }(p, 9) \in(-1) \quad \text { (and } \operatorname{lemn} \mid \in[0,1\}\right)\right)^{n} p 1
\end{gathered}
$$

π is consistent, no
-instance $\rightarrow \rightarrow$ in tuboptrairl $\mathbb{E}_{\nu}\left[\frac{N_{a}(T)}{T}\right] \underset{T \rightarrow \infty}{\longrightarrow} 0$

- instance $v^{\prime} \rightarrow$ all $i \neq k$ ane suboptiond:
for any $\alpha \in[0,1], \mathbb{E}_{v^{\prime}}\left[N_{0}(T)\right]=\cdot\left(T^{\alpha}\right)$
In particinar: $T-\mathbb{E}_{v^{\prime}}\left[N_{R}(T)\right]=\sum_{i=k} \underset{l^{\prime}}{\mathbb{E}}\left[N_{i}(T)\right]=o\left(T^{\alpha}\right)$
no:

$$
\frac{1}{1-\mathbb{E}_{V_{r}}\left[\mathbb{N}_{\frac{1}{}(T)}^{T}\right]}=\frac{T}{T \cdot \mathbb{E}\left(N_{2}(T)\right)}=\frac{T}{o\left(T^{\alpha}\right)}
$$

$\geqslant T^{1-\alpha}$ for T large enough
Substituting bock and dividing by $\ln T$: for any $\alpha t(0,1)$ and T bags

$$
\frac{\mathbb{E}_{v}\left[N_{a}(T)\right] \operatorname{Kc}\left(v_{l}, v_{k}\right)}{\ln T} \geqslant-\frac{\ln 2}{\ln T}+\left(1-\mathbb{E}_{v}\left[\frac{N_{l}(T)}{T}\right]\right) \frac{\ln \left(f^{1 \cdot \alpha}\right)}{\ln T}
$$

Thus $\lim _{T \rightarrow+\infty} \frac{\mathbb{E}_{v}\left(N_{a}(T)\right]}{\ln T} \geqslant \frac{(1-\alpha)}{K L\left(v_{L}, v_{a}^{\prime}\right)} \quad$ (time whether the $K L$ in $\langle+\infty)$
fo ar $\alpha \in(0,1)$, w

$$
\lim _{T \rightarrow+\infty} \frac{\mathbb{E}_{v}\left(N_{a}(T)\right]}{\ln T} \geqslant \frac{1}{K\left(\left(v_{k}, v_{a}^{\prime}\right)\right.}
$$

Holds for any $v_{a}^{\prime} \in D$, it $v_{e} \ll v_{a}^{\prime}$ and $\left.\mathbb{E}\left(v_{a}^{\prime}\right)\right\rangle \mu^{*}$, so that raking $^{\prime}$ the suppemen of the right hard side on these v_{a}^{\prime} yields the lower bound:

$$
\operatorname{limin}_{T \rightarrow \infty} \frac{\mathbb{E}_{1}\left[T_{N}(T)\right]}{\ln _{T} T} \geqslant \frac{1}{k_{i n} f\left(r_{\mu} \lambda \lambda^{\mu} \mu^{\mu}\right)}
$$

Proof of the lemma

- The inequably 3 is a direct application of the data processing inequality with expectations.
- For the equality.
(1) we show by induction that $\mathbb{P}_{V}^{H_{T}}=K_{T}\left(K_{T \cdot 1}\left(\cdots\left(K_{1} \lambda_{0}\right)\right)\right.$
w deck below bur ts ingubar
where K_{F} is the ramistion fennel:
$T=0: \quad H_{0}=U_{0} \sim \lambda_{0}: \quad P_{v}^{U_{0}}=\lambda_{0}$
$t=r+1 \quad \forall A \in B(6,1) \times\left(1 R \times\left(0,1 J^{+}\right)\right), \quad \forall B^{\prime} \in B(R), \forall B C B((1) A) ;$

$$
\begin{aligned}
\mathbb{P}_{v}^{H_{t+2}}\left(A_{\times} B^{\prime} \times B\right) & =\mathbb{P}_{v}\left(H_{+} \in A \text { and } X_{d_{1}}\left(A_{1}\right) \in B^{\prime} \text { and } U_{r-1} \in B\right) \\
& =\mathbb{E}_{v}\left[H_{A}\left(H_{t}\right) \mathbb{P}_{v}\left[X_{\text {tut }}(1+1) \in B^{\prime} \text { and } U_{r+1} \in B \mid H_{H}\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}_{v}\left[\mathbb{1}_{A}\left(H_{r}\right) K_{r+3}\left(H_{r}, B^{\prime} \times B\right)\right] \quad \downarrow \operatorname{dop} \mid K_{r=1} \\
& =\int \mathbb{1}_{A}(h) K_{r+1}\left(h, B^{\prime} \times B\right) d \mathbb{P}_{v}^{H_{1}}(h) \\
& =K_{r+1} \mathbb{P}_{v}\left(A \times B^{\prime} \times B\right) \rightarrow \text { wive ohownth induction }
\end{aligned}
$$

(2) we check that the assumptions of the chain vale ave satisfied.

- the K_{r} are regular transition hermes $\forall E \in B(\mathbb{R}) \otimes B([0,1])$,

$$
h \mapsto K_{+}(h, E)=\sum_{k=1}^{K} \mathbb{1}_{\left(\pi_{+}, h=h\right)}\left(V_{k} \otimes \lambda_{0}\right)(E) \text { i miserable as }
$$

π_{r} is measurable (with respect t. comidend paces)

- Assumption ($): \forall h, K_{f}(h, \cdot) \ll K_{r}^{\prime}(h, \cdot)$ es $\forall h, v_{h} \ll v_{k}^{\prime}$ by as.
- Assumption ($\quad(h,(y, u)) \longmapsto \frac{d K_{r}(h,)}{d K_{r}^{\prime}\left(h_{i}\right)}(y, u)$

$$
=\sum_{a=1}^{K} 1_{\left(\pi_{r}(h)=a\right)} \frac{d v_{a}}{d v_{a^{\prime}}}(y)
$$

is indeed bi-measmote (puchude of measwath functions)
(3) We then may apply the chain rule and show by induction the desired result based on:

$$
-K C\left(\mathbb{P}_{2}^{H_{0}}, \mathbb{P}_{2}^{H_{0}}\right)=K L\left(\lambda_{0}, \lambda_{0}\right)=0
$$

$$
\left.=K L\left(\mathbb{P}_{\nu}^{H_{r}}, \mathbb{P}_{\nu}^{H_{r}}\right)+\int K L\left(K_{r+1}(h,), K_{r+1}^{\prime}\left(h_{,}\right)\right)\right) d \mathbb{P}_{\lambda}^{H_{r}}(h)
$$

$$
\begin{aligned}
& =K L\left(\mathbb{P}_{\nu}^{H_{r}}, \mathbb{P}_{\nu}^{H_{r}}\right)+\int K L\left(\nu_{\pi_{r+}(h)} \otimes X_{0}, \nu_{T_{\text {Th(} / 2}}^{\prime} \otimes \lambda_{0}\right) d \mathbb{P}_{\nu}^{H_{r}}(h) \\
& =K L\left(\mathbb{P}_{\nu}^{H_{r}}, \mathbb{P}_{v^{\prime}}^{H_{r}}\right)+\sum_{k=1}^{K} K L\left(\nu_{h}, v_{k}^{\prime}\right) \cdot \underbrace{\int \mathbb{1}_{\pi_{n_{1}}(h)=k} d \mathbb{P}_{v}^{H_{r}}(h)}_{\mathbb{E}\left[\mathbb{1}_{\left(T_{n+1}\left(r_{r}\right)=k\right)}\right]} \\
& =\mathbb{E}\left[\mathbb{1}_{\left(r_{r+1}=a\right)}\right] \\
& \left.=K L\left(\mathbb{P}_{r}^{H_{r}}, \mathbb{P}_{-}^{H_{r}}\right)+\sum_{a=1}^{K} K L\left(v_{e}, v_{k}^{\prime}\right) \mathbb{E}\left[\mathbb{1}_{\left(a_{r+1}-a\right)}\right)\right]
\end{aligned}
$$

byidutaon

$$
\begin{aligned}
K L\left(\mathbb{R}_{v}^{H_{T}}, \mathbb{P}_{v^{\prime}}^{H_{b}}\right) & =\sum_{k=1}^{T} \sum_{h=1}^{K} K L\left(v_{v_{1}} v_{e^{\prime}}\right) \mathbb{E}\left[\mathbb{1}_{a_{r}=k}\right] \\
& =\sum_{l} K L\left(v_{a}, v_{a}^{\prime}\right) \mathbb{E}\left[N_{a}(T)\right]
\end{aligned}
$$

Comments on the lower bound!

- see a comporitosin with aur upper bounds in exencire sesson \#4.
- algoithus with gptianal intance dependent bounds are bnow (1.gKL.UCB, but requis a long ond technical anolysis.
- Thi in an asymptotic Cover coend fo $T \rightarrow+\infty$. what about omall T ? \rightarrow ree exeraise session $\# 4$
what if we fix T and choose abbitwily the bandit instance v ?
Theorem (mininax lower bound)
Let $D=\{\mathcal{N}(\mu, 1) \mid \mu \in \mathbb{R}\}, K \geqslant 2$ and $T \geqslant K \cdot 1$ Then, then exists a univual constant $c>0$ such that,
for any poling π, there $v \in D^{k}$ nit.

$$
R_{T}(\pi, v) \geqslant c \sqrt{K T}
$$

Proof in exercise session \#4. mini max $\longleftrightarrow \quad \min _{\pi} \max _{v+D^{k}} R_{T}(T, v) \geqslant<\sqrt{k T}$

