Lecture \#5: some properties of the KL

Last lecture, we proposed algorithms with (pseudo) negnets bounded as

$$
R_{T} \leqslant c \sum_{G, D_{a>0}} \frac{\ln T}{\Delta_{k}}
$$

(instance dependent regret)

Is it possible to do better?
This lecture focuses on lower bounding the achievable regut by any algorithm
For that we consider a model where the rewords distributions belong To some known distribution set 2
ie $\quad \forall k \in[K], v_{k} \in D$
unknown $? \tau_{\text {known }}$

One can show matching upper and lower bounds (with associated strategies):

$$
R_{T} \text { is at best of order }\left(\sum_{k, \Delta \lambda_{00}} \frac{\Delta_{k}}{K_{i n f}\left(v_{a,}, \mu^{i}, D\right)}\right) \ln T
$$

where

Kullbach-Leibler divergence

We will only prove the lower bound part
(and the upper bound in excise session/homevolk fo two specific cases)

- Case 1: $D=\left\{N\left(\mu, r^{2}\right) \mid \mu \in \mathbb{R}\right\}$
then

$$
\operatorname{Kin} f\left(v_{a}, \mu_{l}, D\right)=\frac{\Delta_{h}^{2}}{2 \sigma^{2}}
$$

Best possible regret of order $2 \sigma^{2} \sum_{a, \Delta \Delta_{0}} \frac{l_{n} T}{\Delta_{R}}$ $U C B$ has regent $\leqslant 32 \sigma^{2} \sum_{a, \Delta_{n}>0} \frac{\ln T}{\Delta_{k}}$
\rightarrow optional up to constant factor can be mode optimal with finer version

- $\operatorname{Case} 2: D=\{\operatorname{Bu}(p) \mid p \in[0,1]\}$
then

$$
\operatorname{Kin} f\left(v_{k}, \mu^{*}, D\right)=\mu_{k} \ln \frac{\mu_{k}}{\mu^{*}}+\left(1-\mu_{k}\right) \ln \frac{1-\mu_{k}}{1-\mu^{*}}
$$

But before proving the lower bound, I guess that some reminder of basic and ron-basic results about KL divergences would be needed!

Definition let \mathbb{P}, \mathbb{Q} be two pobbabilty measures ova (Ω, F)

Basic Facts

- existence of the defining integral when $P \ll \mathbb{Q}$, because $\psi: x \mapsto x \ln x$ is bounded from below on $[0,+\infty)$
- $K L(\mathbb{P}, Q) \geqslant 0$ and $K L(P, Q)=0$ if and only if $P=Q$. indeed, ψ is strictly convex. Jensen's inequality indicates that

$$
K L(\mathbb{P}, \mathbb{Q})=\int_{\Omega} \psi\left(\frac{d \mathbb{P}}{d \mathbb{Q}}\right) d \mathbb{Q} \geqslant \psi\left(\int_{\Omega} \frac{d \mathbb{P}}{d \mathbb{Q}} d \mathbb{Q}\right)=\psi(1)=0 \text {, with }
$$

equality if and only if $\frac{d \mathbb{P}}{d \mathbb{Q}}$ is \mathbb{Q}-almost smell constant, ie $\mathbb{P}=\mathbb{Q}$.

A useful rewriting:
Assume $\mathbb{P}<\mathbb{Q}$ and let v be any probability measure over (Ω, F) with $\mathbb{P} \ll \nu, \mathbb{Q} \ll \nu$. Denote $f=\frac{d \mathbb{P}}{d \nu}, g=\frac{d \mathbb{Q}}{d \nu}$, then $K L(\mathbb{P}, \mathbb{Q})=\int_{-\Omega} \ln \left(\frac{f}{g}\right) f d \nu$.
see proof in exercise session 3 .
Useful when \mathbb{P} and \mathbb{Q} both admit densities over a classical reference measure (eg Lebesgue).

Lemma (data pocecieng inequality)
Let \mathbb{P}, \mathbb{Q} be two probability measures over (Ω, F).
Let $X:(\Omega, F) \rightarrow\left(\Omega^{\prime}, \mathcal{F}\right)$ be any random variable.
Denote by \mathbb{P}^{x} and \mathbb{Q}^{X} the laws of X under \mathbb{P} and \mathbb{Q}.
Then $\quad K L\left(\mathbb{P}^{x}, \mathbb{Q}^{x}\right) \leqslant K L(\mathbb{P}, \mathbb{Q})$

Proof: we can assume $\mathbb{P} \ll Q$, since otherwise $K L(\mathbb{P}, \mathbb{Q})=+\infty$ and it holds.
We show that we then have $\mathbb{P}^{x}<Q^{x}$, with $\frac{d \mathbb{P}^{x}}{d Q^{x}}=\mathbb{E}_{Q}\left[\left.\frac{d \mathbb{P}}{d Q} \right\rvert\, X=\cdot\right]$

$$
={ }_{i=}^{\gamma} \gamma(x)=E_{\theta}\left[\left.\frac{d p}{d Q} \right\rvert\, x\right]
$$

Indeed, for all $B \in \mathcal{F}^{\prime}$,

$$
\begin{aligned}
& \text { for all } B \in \mathcal{F}, \\
& \begin{aligned}
& \mathbb{P}^{x}(B)= \mathbb{P}(X \in B)=\int_{\Omega} \mathbb{1}_{B}(X) \frac{d \mathbb{P}}{d \mathbb{Q}} d \mathbb{Q} \stackrel{\downarrow}{=} \int_{\Omega} \mathbb{1}_{B}(x) \mathbb{E}_{\mathbb{Q}}\left[\left.\frac{d \mathbb{P}}{d \mathbb{Q}} \right\rvert\, x\right] d \mathbb{Q} \\
&= \int_{\Omega} \mathbb{S}_{B}(X) \gamma(X) d \mathbb{Q}=\int_{\Omega^{\prime}} \gamma d \mathbb{Q}^{X} \\
& \text { by } \operatorname{def} \text { of } \mathbb{Q}^{x}
\end{aligned} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
K L\left(\mathbb{P}, \mathbb{Q}^{x}\right) & =\int_{\Omega^{\prime}} \gamma \ln \gamma d \mathbb{Q}=\int_{\Omega} \gamma(x) \ln \gamma(x) d \mathbb{Q} \\
& =\int_{\Omega}\left(\mathbb{E}_{\mathbb{Q}}\left[\left.\frac{d \mathbb{P}}{d \mathbb{Q}} \right\rvert\, X\right] \ln \left(\mathbb{E}_{\mathbb{Q}}\left[\left.\frac{d \mathbb{P}}{d Q} \right\rvert\, X\right]\right) d \mathbb{Q}\right. \\
& \qquad \begin{array}{l}
\text { Uisconvex; } \\
\text { conditional } \\
\text { Jenneaninequily }
\end{array}
\end{aligned}
$$

References . The proof above is due to Ali and silvey ('666),
but It's far from being well-Awown.

- Typical proofs in the moe vent Cteadave:
- either forms on the disrate case (com ind Themes, 2006)
- o we the duality /vainational formant for the KL (Muscat zest, Bolection, Lyon, Masan 2013)
- He joint convexity of KL, given below, is typically proved in a tedious way, relying on the joint convexity of $(x, y) \in \mathbb{R}_{ \pm}^{2} \mapsto\left(\frac{x}{y}=\frac{a}{y}\right) y$ V may see it instead as a consequence of the data pressing imparity.

Conollouy (faint convexity of KL)
For all polabivity distumbutens $\mathbb{P}_{1}, \mathbb{P}_{2}$ and \mathbb{Q}_{1}, Q_{2} are the save measeable pac (Ω, F) and all $\lambda \in(0,1)$

$$
\begin{aligned}
K L\left((1-\lambda) \mathbb{P}_{1}+\lambda \mathbb{P}_{2},(1-\lambda) \mathbb{Q}_{1}+\lambda \mathbb{Q}_{2}\right) \leqslant & (1-\lambda) K L\left(\mathbb{P}_{1}, Q_{1}\right) \\
& +\lambda K L\left(\mathbb{P}_{2}, \mathbb{Q}_{2}\right)
\end{aligned}
$$

Poof: we augment (Ω, F) ito $\left(\Omega^{\prime}, F^{\prime}\right)$ where

$$
\begin{aligned}
& \Omega^{\prime}=\Omega \times\{1,2\} \\
& \left.F^{\prime}=F \otimes\{\{1\},\{2\}, \mid 1,2\}\right\}
\end{aligned}
$$

we define the raven pain (X, J) by the projections $X_{X:(\omega, j) \rightarrow \omega}^{\Omega(1, y) \rightarrow r}$

$$
\text { and } J_{i} \begin{aligned}
& \pi_{[}(1,2) \rightarrow(1,3) \\
& (\omega, j) \rightarrow j
\end{aligned}
$$

Let \mathbb{P} be apobabilily meassue on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ such that:

$$
\left\{\begin{array}{l}
J \sim 1+\operatorname{Bu}(J) \\
x \mid J=j \sim \mathbb{P}_{j}
\end{array} \quad\left(\text { and a similar def for Q with } Q_{2}, Q\right)\right.
$$

that is $\left.\quad \forall \in \in(1,2\}, \forall A \in F, \quad \mathbb{P}(A \times[j])=(11-\lambda) \mathbb{1}_{\mid: 11}+\lambda_{\mid j=2}\right) \mathbb{P}_{j}(A)$
Now,

$$
\begin{aligned}
& \mathbb{P}^{x}=(1-\lambda) \mathbb{P}_{1}+\lambda \mathbb{P}_{2} \\
& \mathbb{Q}^{x}=(1-\lambda) \mathbb{Q}_{2}+\lambda \mathbb{Q}_{2}
\end{aligned}
$$

and as we puller $K L(\mathbb{P}, \mathbb{Q})=(1-\lambda) K L\left(\mathbb{P}_{1}, \mathbb{Q}_{1}\right)+\lambda K L\left(\mathbb{P}_{0}, \mathbb{Q}_{2}\right)$ ot that the
below result follows from the data processing mequally.

Indeed, wee may assume with no loss of generality for $\lambda \theta(0,1)$ that $\mathbb{P}_{1} \ll \mathbb{Q}_{1}, \mathbb{P}_{2} \mathbb{\mathbb { Q }}$, so that $\mathbb{P} \ll \mathbb{Q}$ with

$$
\frac{d P}{d Q}\left(w_{i j}\right)=\mathbb{1}_{\{j=1\}} \frac{d \mathbb{P}_{1}}{d Q_{1}}(w)+\mathbb{1}_{1 ;=2} \frac{d P_{2}}{d Q_{2}}(w)
$$

This entails that:

$$
K L(\mathbb{P}, Q)=\int_{\Omega^{\prime}}\left(\frac{d P}{d Q}\left(w_{j j}\right) \ln \frac{d \mathbb{P}}{d Q}\left(w_{i}\right)\right) d Q\left(w_{i j}\right)
$$

Pa position ($K L$ for product measures, independent case)
Let (Ω, F) and $\left(\Omega^{\prime}, F^{\prime}\right)$ be $T_{N_{0}}$ measurable spaces Let \mathbb{P}, \mathbb{Q} be two probability measures oven (Ω, F)

$$
\mathbb{P}^{\prime}, \mathbb{Q}^{\prime}
$$

$$
\left(\Omega^{\prime}, F^{\prime}\right)
$$

and denote by $\mathbb{P} \otimes \mathbb{P}^{\prime}$ and $\mathbb{Q} \otimes \mathbb{Q}^{\prime}$ the product distributions over $\left(\Omega \times \Omega^{\prime}, F_{\otimes} F^{\prime}\right)$. Then

$$
K L\left(\mathbb{P} \otimes \mathbb{P}^{\prime}, \mathbb{Q} \otimes \mathbb{Q}^{\prime}\right)=K L(\mathbb{P}, \mathbb{Q})+K L\left(\mathbb{P}^{\prime}, \mathbb{Q}^{\prime}\right)
$$

$$
\begin{aligned}
& =\int_{\Omega^{\prime}}\left(\frac{d P_{1}}{d Q_{1}}(\omega) \ln \frac{d P_{1}}{d Q_{1}}(\omega)\right) \mathbb{1}_{\Omega_{x \times 1}\left(\omega_{1 j}\right)}\left(Q_{Q}\left(w_{1 j}\right)\right. \\
& \left.+\int_{\Omega} \int_{\Omega^{\prime}} \frac{d \mathbb{P}_{2}}{d \mathbb{Q}_{2}}(\omega) \ln _{n} \frac{d \mathbb{P}_{2}}{d \mathbb{Q}_{2}}(\omega)\right) \mathbb{1}_{\Omega 1_{22}}\left(w_{1 j}\right) d \mathbb{Q}\left(w_{1, j}\right) \\
& =\int_{\Omega}\left(\frac{d \mathbb{P}_{1}}{d Q_{1}}(w) \ln \frac{d \mathbb{P}_{1}}{d Q_{1}}(\omega)(1-\lambda) d \mathbb{Q}_{1}(w)+\ldots .\right. \\
& =(1-\lambda) K L\left(\mathbb{P}_{1}, \mathbb{Q}_{1}\right)+\lambda K L\left(\mathbb{P}_{1}, \mathbb{Q}_{2}\right) \quad \square .
\end{aligned}
$$

Poof we have $\mathbb{P} \otimes \mathbb{P}^{\prime} \mathbb{\mathbb { Q } \otimes \mathbb { Q }} \Longleftrightarrow\left(\mathbb{P} \mathbb{Q}\right.$ and $\left.\mathbb{P}^{\prime}<\mathbb{Q} \mathbb{Q}^{\prime}\right)$, no we can assume that all \ll statements hold. Then

$$
\frac{d\left(P_{\otimes} \mathbb{P}^{\prime}\right)}{d\left(\mathbb{Q} \otimes \mathbb{Q}^{\prime}\right)}=\frac{d \mathbb{P}}{d \mathbb{Q}} \quad \frac{d \mathbb{P}^{\prime}}{d \mathbb{Q}^{\prime}}
$$

(this is a fundamental resat in measure theory and of the beat characteryations of independence)

Therefor by Tonelti

$$
\begin{aligned}
& f=\frac{d P^{\prime}}{d Q}\left(\frac{d P}{d Q} \ln \frac{d P}{d Q}+\frac{1}{e}\right) \\
& j=\frac{d P}{d Q}\left(\frac{d P^{\prime}}{d Q} \ln \frac{d P^{\prime}}{d Q^{\prime}}+\frac{1}{e}\right) \text { here } \\
& \int(f+g) d p=\left.\iint d p\right|^{\prime}|g| t=\int_{\Omega^{\prime}}^{(\int_{\Omega}\left(\frac{d P}{d Q} \ln \frac{d P}{d Q}\right) d Q^{\frac{d \mathbb{P}^{\prime}}{d Q^{\prime}} d Q^{\prime}}+\underbrace{}_{d \mathbb{P}^{\prime}}+\operatorname{amilen} \text { term with } \ln \frac{d P^{\prime}}{d Q^{\prime}}}
\end{aligned}
$$

$$
\begin{aligned}
& K L\left(p^{\prime}, Q^{\prime}\right)
\end{aligned}
$$

Consequence (Garivies, Menand, stolt, 2016)
Dala-poressing inequality with expectrateino of random variables. Let $X:(\Omega, F) \rightarrow([0,1), B([0,1]))$ berar $[0,1]$-valued randers variable Then, denoting by $\mathbb{E}_{P}[X]$ and $\mathbb{E}_{Q}[X]$ the respective expectations of X andes \mathbb{P} and Q) we have:

$$
\mathbb{E}_{p}[x] \ln \frac{\mathbb{E}_{p}[x]}{\mathbb{E}_{Q}[x]}+\left(1-\mathbb{E}_{p}[x]\right) \ln \frac{1 \cdot \mathbb{E}_{p}[x]}{1-\mathbb{E}_{R}[x]}=\operatorname{KL}\left(\operatorname{Be}\left(\mathbb{E}_{p}[x]\right), \operatorname{Be}\left(\mathbb{E}_{Q}[x]\right) \leqslant K L(p, Q) .\right.
$$

Paopf: we denote by μ the Lebesgue manse oven $[0,1]$ and augment the measurable space it to $\left(\Omega_{\times}[0,1], F \otimes B([0,1))\right.$, were which we consider the poduct-ditrubitions $\mathbb{P} \otimes \mu$ and $\mathbb{Q} \otimes \mu$.
For any event $E \in F \otimes B([0,1])$, we have by the data perusing nequatty.

$$
\begin{aligned}
K L\left((\mathbb{P} \otimes \mu)^{1 E},(Q \otimes \mu)^{1 E}\right) & \underbrace{\mathcal{A}_{E}}\left(P_{\rho \mu}\right)(E)) \\
\underbrace{K L}_{\operatorname{Bu}\left(Q_{8 p \mu}(E)\right)}\left(\mathbb{P} \otimes \mu, Q_{\otimes \mu}\right) & =K L(\mathbb{P}, Q)+K L(\|, \mu) \\
& =K L(\mathbb{P}, \mathbb{Q}) .
\end{aligned}
$$

The prog is concluded by picking $E \in F_{\otimes} B[[0,1])$ ouch $H_{\alpha} \mid t \quad P_{\otimes \mu}(E)=E_{P}[x]$ and $\mathbb{Q} O \mu(E)=\mathbb{E}_{Q}[X$.
Is it possich?
Yes, Tolling $E=\left\{(w, x) \in \Omega_{x}[0,1]: x \leqslant X(w)\right\} \in F \otimes B([0,1))$ as X is measurable.
By Tonalli itherem:

$$
P \otimes \mu(E)=\int_{\Omega}\left(\int_{[0,1]} \mathbb{1}_{\{x \leqslant x(\omega)\}} d \mu(x)\right) d \mathbb{P}(w)=\int_{\Omega} X(w) d \mathbb{P}(w) \quad \text { and same for } Q \text {. }
$$

The chain rule - A generalization of the decomposition of the KL between product-diotributuons.
we will need it in aopeciad case only, when the joint distributions follow fum one of the magical distributions via a otochotic kernel.

Definition let (Ω, F) and $\left(\Omega^{\prime}, F^{\prime}\right)$ be two measurable spaces; we denote by $P\left(\Omega^{\prime}, F^{\prime}\right)$ the ret of probability measures over $\left(\Omega^{\prime}, F\right)$
A (regular) stochastic kernel K is a mapping $(\Omega, F) \rightarrow P\left(\Omega^{\prime}, F\right)$

$$
\omega \longmapsto K(\omega, \cdot)
$$

such that $\forall B \in F^{\prime}, \omega \longmapsto K(\omega, B)$ is F.ea table
Now consider two such kernels K and L, and two probability measures $^{\text {s }}$ P and \mathbb{Q} aver (Ω, F). Then $K P$ and $L \mathbb{Q}$ defined below are pabbibity measures over $\left(\Omega \times \Omega^{\prime}, F \otimes F^{\prime}\right)$, by some extension the rem (Carthesdory)
$\forall A \in F, \forall B \in F^{\prime}$,

$$
\begin{aligned}
K \mathbb{P}(A \times B) & =\int_{\Omega} \underbrace{\mathbb{1}_{A}(w) K(w, B)}_{\text {is minded mastwoble }} d \mathbb{P}(w) \\
L \mathbb{Q}(A \times B) & =\int_{\Omega} 1_{A}(w) L(\omega, B) d Q(w)
\end{aligned}
$$

An extension of
Fubinit (sorely theorem
Let $\varphi: \Omega \times \Omega^{\prime} \rightarrow \mathbb{R}$ bethe $\mathcal{F}_{\otimes} F^{\prime}$ measurable and $\geqslant 0$ or $K \mathbb{P}$-integrable

Then $\omega \longmapsto \int_{\Omega^{\prime}} \varphi(\omega, \omega) K\left(\omega, d \omega^{\prime}\right)$ is $\mathcal{F}_{\text {- measurable }}$ and $\int_{\Omega \times \Omega^{\prime}} Y d K \mathbb{P}=\int_{\Omega}\left(\int_{\Omega^{\prime}} \Psi\left(\omega, w^{\prime} K\left(\omega, d \omega^{\prime}\right)\right) d \mathbb{P}(\omega)\right.$ including measurability of $\left.\omega \rightarrow \int P\left(\omega_{1} \cdot\right)^{\circ}\right) K\left(\omega d_{1}\right)$ by ugnanity of K Roof: The result is true ${ }^{\downarrow}$ for $\varphi=1_{A \times B}$ by definition of $K \mathbb{P}$

Extension to $\mathbb{1}_{E}$ for any $E \in F_{\otimes} F^{\prime}$ by an argument of r-algebra contamed/monotore class theoeen, using monotone convergence (imculungthe $\omega \mapsto \int_{\Lambda^{\prime}}^{\cdots}$ menembabilty)

Extension to $\left\{\begin{array}{l}\varphi \geqslant 0 \text { by monet one convigence } \\ \varphi \in \mathbb{L}^{1}\end{array}\right.$
Theorem (chain rule for KL): Astarte $\mathbb{P} \mathbb{\mathbb { Q }}$
As soon as (*) $K(w, 0) \ll L(w, \cdot)$ for \mathbb{Q}-alost all $\omega \in \Omega$ with the existence of a function $g:\left(w, w^{\prime}\right) \mapsto \frac{d K(w,)}{d L(a, \cdot)}\left(w^{\prime}\right)$ being $F_{\otimes} F^{\prime}$.measurable, τ up T_{0} a $L \mathbb{Q}$-null set
Then $K L(K \mathbb{P}, L Q)=K L(\mathbb{P}, Q)+\int_{\Omega} K L(K(w, 0), L(w, p)) d \mathbb{P}(w)$
where $w \longmapsto K L(K(w, 0), L(w, \cdot))$ is indeed F measurable and $\geqslant 0$ no that the integral in the right-hand side is well defined.

Renal:

1) The assumptions (*) and (will de satisfied for the
applications we hove in mind
2) They can be relaxed: = it suffices to assume that Ω 'i sa Topological space with a countable base and F^{\prime} the Bol v-algebra.
ie then exists rome countable collection $\left(O_{m}\right)_{m>1}$ of open ruth of Ω^{\prime} ouch that each open set V of Ω^{\prime} can be written
$V=\bigcup_{i=0 \leq V} O_{i}$, that in, as a countable union of laments of
$\left(0_{m}\right)_{m 31}$
Ex: I^{\prime} a separable metric space \rightarrow we will comaide

$$
\Omega^{\prime}=[0,1] \times\left(\mathbb{R} \times[0, \eta)^{N}\right.
$$

Poof by bi-meatuability of $g \ln g$, and since gang islown bounded, arimetiote the puvions lemma can be applied r_{0} get $w \longrightarrow \int_{\Omega^{\prime}}\left(w_{1}\right) \ln \left(w_{j}\left(w_{1}\right)\right) L(u, d)$

$$
\left.=K L\left(K\left(\omega_{1}\right)\right) L\left(\omega_{i}\right)\right)
$$

is F- measurable and $\geqslant 0$

* We assume $\mathbb{P}<\mathbb{Q}$, let $f=\frac{d \mathbb{P}}{d \mathbb{Q}}$. What can we say about $\left(w, w^{\prime}\right) \mapsto \rho(w)\left(g\left(\omega, w^{*}\right)\right.$?

$$
\begin{aligned}
& =\int_{\Omega^{\prime}}^{\mathbb{1}_{B}\left(\omega^{\prime}\right)} K K\left(\omega, d \omega^{\prime}\right)=K\left(\omega_{,} B\right) \\
& =\int_{\Omega} \frac{\mathbb{H}_{A}(w) K(\omega, B)}{\text { Fmasamalle }} \int \frac{f(w) d \mathbb{Q}(w)}{d \mathbb{P}(w)}=K \mathbb{P}(A \times B) \text { by bof } f K P
\end{aligned}
$$

By Radon-Nikadym's theorem: $\quad \frac{d K \mathbb{P}}{d L \mathbb{Q}}=f g \quad L \mathbb{Q}$-as

- It in earily aeen that $K \mathbb{P} \ll \mathbb{Q} \Rightarrow \mathbb{P} \mathbb{Q} \mathbb{Q}$ (inall cases, even withaut $\left({ }^{*}\right.$ and (80)
wdud $L \mathbb{Q}\left(A \times r^{\prime}\right) \approx \mathbb{Q}(A)$

$$
K \mathbb{P}\left(A \times \Omega^{\prime}\right)=\mathbb{P}(A)
$$

- Therefore under ($(*)$, we have $K \mathbb{P} \ll L Q \Leftrightarrow \mathbb{P} \ll \mathbb{Q}$

Then $K L(K \mathbb{P}, L \mathbb{Q})=\int_{\Omega \times \Omega^{\prime}}\left(f(\omega) g\left(\omega, w^{\prime}\right) \ln \left(f(\omega) g\left(\omega, \omega^{\prime}\right)\right) d L \mathbb{Q}\left(\omega, w^{\prime}\right)\right.$.
$\varphi=f g \ln (f g)$ is lown bounded. The lemma (extenstion of Fubuni: Tonell etterds toit):

$$
\int(f g \ln (f g)) d L \mathbb{Q}=\int_{\Omega} f(w)\left(\int _ { \Omega ^ { \prime } } \left(g\left(\omega ; w^{\prime}\right)\left(\ln g\left(\omega j w^{\prime}\right)+\ln (f(w))\right) L\left(w, \alpha^{\prime} w^{\prime}\right) d Q(w)\right.\right.
$$

$\left(\right.$ ogain we an un the transbtion by $+\frac{1}{e} r_{0}$ juntify thingunality

$$
=\int_{\Omega}(\underbrace{(\int_{\Omega^{\prime}} g\left(\omega, w^{\prime}\right) \ln g\left(\omega, w^{\prime}\right) L\left(\omega, d N^{\prime}\right)+\ln ((\omega) \underbrace{\int_{\Omega^{\prime}}}_{=1} \underbrace{g\left(\omega, \omega^{\prime}\right)\left\lfloor\left(\omega, d \omega^{\prime}\right)\right.}_{=1})}_{K L(K(\omega, i), L(\omega, i))}) \rho(\omega) d Q(\omega)
$$

