
Lecture #5 : Lower bound

Last Lecture
,

we proposed algorithms with prend regrets bounded as

* Cinstance dependent reguet)

Is it possible to do better ?

This lectur focuses on lower bounding the achievable regut by any algorithm

For that we consider a model where the rewards distributions belong
to come known distribution set D.

re Re , Tee s
-

unknown
- Ikmawm

One can show matching upper and
lower bounds (with associated strategies) :

Et is at best of order(Tapi en
where

Fif (vap) =ifWar Im
Fullback-Leibler divergence



we will only prove the lower bound part

·cat : D = (Nprof I Mer
then

FinfNap)=
But posle regret of order 2

VCB has regutIt
↳ optimal up to constant factor

can be made optimal with fines version

·2 : D = (Bu(1 p + (1))
Ten

Finftap) = Naln + 1-1) InM



But before proving the lover bound, I guess
that come reminder of basic and mon-basic

results aboutL divergences would be needed
For sabe of time ,

I will only give these syproperties without any proof

Definition let P① be to probability measures over

#(P=
* if Pis not absolutely

continuous wat a

1Ldo
⑪(A) = 0 = P(A) =0

Basic Facts

· existence of the defining integral when P*Q ,
because

Y : x-sence is bounded from below on Cota

· KL(P/ 20 and KLPQ) = 0 if and only if P= 0.

indeed
.
Tis strictly convex . Jensen's inequality indicates that



=)M=40

equality if and only if i Dalmost suely constanti

A useful reutingand letr be
any probability measurr a

Lef) with PEU
,
QEV

.

Denote =g=
then FRCP/ = /en (dr

useful when P andQ both admit deneities over a classical reference
measure (eg Lebergue)

Le ma (data processing inequality
Let p

.
O be two probability measures over (F)

Let X :G - (F) be any
random variable.

Renote by P
*
and ⑰ the laws of Xunder P and Q

Them Ap,) XL(p . 0)



-Toposition(L for productmesures , independent case

Let (2F) and Cr F) be two measurable spaces.

Let P
. Q be two probability measures over (m

.

F

P ①
·

Gef

and denote by POP' and the product distributions over

Char , fof) .
Then

(pep go) =Alpe helpia) .

Coquence /Garivier ,
Menard

, Stolty 2016

Data-processing inequality with expectations ofransom variables.

Let X : (2) = 150.1 , BEB) beang 50
.1) - valued randes variable

then
, denoting by # andFo the respective expectations of Xander Pand

⑦ / we have :

#1-

Proof by apper-bounding #L(Pop Copyr
Bure Trop ce



The chain rule - A generalization of the decomposition of theL
between product-distributions

We will need it in aspecial case only , when the joint distributions follow from
one of themarginal distributions via a stochastic Gernel.

Definition let (2. F) and CrF) be two measurablee spaces :
we denote by PC # the act of probability measures ovr (F)

Aregular stochastic ternel # is amapping CrF)- PCr)
w = X(w,)

such at F wwB) is Freasurable

Now consider two such kernelsand and to probability measures

Pand D a CrF) .
Then #P and L defined below are probability

masures over CrXM Fort
, by same extension therem

Clautheoday
vaef.hef",b)



rabl = /Hal)(wB) doc
-actually with noloss ofgeneralily

Therem/chair ruleforM : Assum IPED

As womas (w% # LW for Dalmost all wer
with the existence of afankin g : (w .ww

being FoF
:measurable E

up to a LD-null set.

themL FL(((ww dip(w

where WALCHw% (w,) in indeed Fmeasurable and 50 so

That the integral in the right-hand side is well defined.

Remark:

1) The assumptions (and will be satisfied for the

applications we have inmind.

2 They can be relaxed : - itsuffices to assume that r'isa

topological space with a countable baseandr
is the Borel #falgebra



i . ether exists some countable collection (On
man of open

sels ofI such that each open set V of i can be written

VU O: that is as a countable union of elements ofi : 0:W

Com/mss-

=: ra separable metric space -> we will vorside
r = 20

. 1) + (R+ (01/N

3) A typical kernel is given by F(w
,
B) = P(yB(X = X()

The chain sule then sewrites(* D )=(p** ) + 42(

Now we have stated the useful properties of the FL
let's get back to the lower bound.

Brafl Sandit setting
.
to each arm his associated a probability distribution

va -0.

. O is the bandit model (DPCIR))



- A bandit instance is demoted by u=le
· roal : minimise the regret, which can de unritten as :

Pa ↑

Bounding
the ref bounding ENC

What on the bestpossibl (by andgorithm sounds ?

- what is a randominedstrategyt ?
a

requence ofmasmable functions (Trinss with

Tre Hu = (Vo
r X n .

VrTreChr = art
- -

history of bervations trandomination for
am picked at +L

fint r rounds.

Lemma: (fundamental iniquality for stochastic bandits
For all bandit problems v = /Vale and v = (valates in D withreve for

allk
So all strategies and random variables - taking values in 20.11 thatare

-CH+-mesurable lar of He underland
t

Ne Krava) = Kim p
↑

-> Ell Bul .Deu

dependence institegy It hidden everywhere her.



Prof
· The inequality- is a

diest application of
the data processing nequality with expectations.

· For the equality :

and cam fer 2D --

Af we show by induction that Pr=+ ( +.+( .
-
· (Est

.
/

weceet
whereMy is the transition herne :

i regular & heron poh= et un
~m

pob. measure on 1RX 50
.1)

EO : Ho = Wow : P to

#V+ 2
↓ a ebeairyton) , beblir)

, frebley

(A)=A and /E andUn
I

towerule

=> Er CHACHa) P Marte (r +1) EB' and UrizeB(Hr])
-
# dugn of the model

= Er Heu) . V! · 1013)
and strategy

= ErHACHe FreChe -
Bie defroffre

I wwriting
= (1) Fre Ch .

BB) &Ch
I defnof KarPr

= Fre
*

/AxBB) - we've chowthe viduction



CO we check that the assamptims of the chain whe ar satisfied
· the Dr ar regular transition bermels:GBC) B(20 .1)

h Kah)= Har (#) i masurable as

To in messuale (with respect to considered geaces

· trumptim ( : Eh ./h! #ht as the vara syass .

· trumplianc : (h .(yn)
is indeed bi-measurable (product of measurable functions

(3) We then
many apply the chasi rule and whor by induction the desied

result based on :

-() = Ka =&

· For30 . KL(repHFhi
=Klp (ErchmeCh ·KrieCh) diPa

=Help (km. V) dep Ch



=L(d
-

*&a+z(r)=
=[1 Gran =a)

=Klippe
beindockisn

La

=Extravaet

We are now equipped to
prove

the lowe bound.

Sefort-a strtgy
is consistent wist amodel 8 if

for all bandit instances ve OF / Nae(0 ,1 ,GetDaTo,
ENaCT =4 ..

fo will behaved models , ther exist consistent strategies
eg . ULB with J = P.1)



Symptakif
- typical sounds for good strategies
fueD , Vest Dato,m

/

problem dandent
- optmil schem:m

Fing (a
when Fig(vep) = rif [F2(vee)po)
we will now prove one port of thrispatiality :

alaboud

Therem KaiandRebbe9
S

e199
For all Banditmodels * PCIR)

for any
consistent strategyant

for any
bandit instance -OF

bo all intoptial mo KlieDad , tinp
conflory
In all bandit models D . any

consitent strategy wat D :
all bandit instances

ver

:Amp
-



Roof of the theorem (based on the Comme

King (ra -
D

/ ma = if (traite I we-o , Vativa and( &p
convention if d =-

This is why wewill :

-fix Drakyv and Le t . La so (tie consistentak

- fis an alternation model v' with

↑ vivi Jalith ven and Eva

That is rand vonly differ at h .
the unique optimal am in v

- Take 7= which is 50
. 1-valued

Hil-masurable

Our fundamental inequality Clemiral gialds since w and I only differ at ti

#Nact kakrane) de ellbuleBue
& - In (2 +11-)en
M

idend Fr (Balp) /B = pla() + 11-p)en
= plac + -p en E - (pen() + m-p)(n(2 -p)



Eli
-emz + Epen(g) for all Sig1) land

avefapy

# in consistent
, so

- instance i bis suroptial Er O

-istance v + all itk ore suboptimal :

In any / IvEN =. (t)

En particulan : T-E.Na=

m
2
The for Tage enough

substituting back and dividing by Int : You any
<t(0

.1) andTlage
enough

#NeWee +11-

thuslit ( whethe
te my

a

#100 nlitwerre



Holds for any ve et of vetué and Eva) &Mon that rading the

supremen of the right hand side on these we yields the lowe bound :

tif E

Comments on the lower bound,

- see a companion with aur uppen
bounds in exc chef

· algorithms with optimal instance dependent bounds are hinve le

go
but requis a long and technical analysis

- this is an asymptatic louse bound for -tro
what about small T ? - we exercises cheef

what if we gis t and houss abibority the bandit instance v

Therem (minimax lower bound)

Let D = [N(2/pt) - ES2 and +51 Thethe

wish a universal constant such that

for my policy. there ests -D not :

#R(t), c

Proof in exercise belon

mineinax = wwR
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