Lecture # 5: Lower bound Last lecture, we proposed algorithms with (pseudo) negrets bounded as $R_T \leq C Z = \frac{l_n T}{k_r \delta_{R, 0}}$ (instance dependent regret) Is it possible to de better? This lecture focuses on lower bounding the achievable regul by any algorithm For that we consider a model where the rewards distributions belong to some known distribution set 2 ie VRE[K], VRED unknown I known One can show matching upper and lower bounds (with associated strategies): R_{τ} is at best of order $\left(\sum_{k, \Delta a \neq 0} \frac{\Delta k}{\operatorname{Kin} \left(\operatorname{Va}_{k}, \mu^{*}, \mathbf{D} \right)} \right)$ In T $K_{inf}(\nu_{k}, \mu^{*}, \tilde{\omega}) = \inf \left\{ \begin{array}{c} \mathsf{KL}(\nu_{k}, \nu') & \forall \in \mathcal{D} \\ \mathsf{E}[\nu'] > \mu^{*} \end{array} \right\}.$ Kullbach-Leibler divergence where

We will only prove the lower bound part • Case 1: $D = \left\{ N(\mu, r^2) \mid \mu \in \mathbb{R} \right\}$ then UCB has regret < 3252 Z ChT A.S.Do Sk Lo optimal up to constant factor can be made optimal with finer version • Case Z: $D = (Bu(p) | p \in [0,1])$ then $Kinf(r_{k}, \mu, \mathbf{D}) = \mu_{k} \ln \mu + (1-\mu_{k}) \ln \frac{1-\mu_{k}}{1-\mu^{*}}$

But before proving the lower bound I guess that some reminder of basic and non-basic nesults about KL divergences would be needed. For sale of time, I will only give them Ray populies, without any prof. Definition let IP, Q be two probability measures over (IL, F) $KL(P,Q) = \begin{cases} +\infty & \text{if } P \text{ is not absolutely continuous wrt } Q \end{cases}$ $\int_{\Omega} \left(\frac{dP}{dQ} \ln \left(\frac{dP}{dQ} \right) \right) dQ = \int_{\Omega} \ln \left(\frac{dP}{dQ} \right) dP \quad i \int \frac{P \langle \langle Q \rangle}{P \langle Q \rangle} dP$ Basic Facts

• existence of the defining integral when $P \ll R$, because $\Psi: x \longrightarrow x \ln x$ is bounded from below on $[0, +\infty)$

• $KL(P, Q) \ge 0$ and KL(P, Q) = 0 if and only if P = Q. indeed, 4 is strictly convex. Jensen's meguality indicates that

 $\mathsf{KL}(\mathbb{P},\mathbb{Q}) = \int_{\Omega} \Psi(\frac{d\mathbb{P}}{d\mathbb{Q}}) d\mathbb{Q} \quad \mathcal{V}\left(\int_{\Omega} \frac{d\mathbb{P}}{d\mathbb{Q}} d\mathbb{Q}\right) = \Psi(1) = 0, \text{ with}$ equality if and only if $\frac{dP}{dQ}$ is Q-almost surely constant, is P=Q. A useful rewriting: Assume P&R and let v be any probability measure over $(\mathfrak{R}, \mathcal{F})$ with $\mathbb{P} \ll \mathcal{V}$, $\mathbb{Q} \ll \mathcal{V}$. Denote $\int = \frac{d\mathbb{P}}{d\mathcal{V}} / g = \frac{d\mathbb{Q}}{d\mathcal{V}} / g$ Hen $KL(IP, Q) = \int ln(\frac{1}{g}) f dv$. Useful when P and Q both admit densities over a classical reference measure (eg Lebesgue). Lenma (data processing inequality) Let \mathcal{R}, \mathcal{R} be two probability measures over $(\mathfrak{I}, \mathcal{F})$. Let $X: (\mathfrak{I}, \mathcal{F}) \to (\mathfrak{X}, \mathcal{F})$ be any random variable. Denote by IP and Q the bass of X under IP and Q. Then $KL(\mathbb{P}^{\times}, \mathbb{Q}^{\times}) \leq KL(\mathbb{P}, \mathbb{Q})$

Proposition (KL for product measures, independent ase) Let (R,F) and (SI',F') be two measurable spaces. Let P, R be two possibility measures over (r,F) P', R' (SI',F') and denote by $P \otimes P'$ and $Q \otimes Q'$ the product distributions over $(\Sigma \times \Pi', F \otimes F')$. Then $KL(P \otimes P', Q \otimes Q') = KL(P,Q) + KL(P',Q')$. Consequence (tanivier, Herand, Stoltz 2016) Data-processing megnability with expectations of random variables. Let $X : (\Im, F) \rightarrow ([0, 1], B([0, 1]))$ be any [0, 1]-valued random variable Then, denoting by $\mathbb{E}_{p}[X]$ and $\mathbb{E}_{Q}[X]$ the respective expectations of X and P and Q, we have: $\mathbb{E}_{p}[X]\left(n\frac{\mathbb{E}_{p}[X]}{\mathbb{E}_{p}[X]}+\left(1-\mathbb{E}_{p}[X]\right)\left(n\frac{1\cdot\mathbb{E}_{p}[X]}{1-\mathbb{E}_{p}[X]}\right)=\mathsf{KL}\left(\mathsf{Be}\left(\mathbb{E}_{p}[X]\right)\mathsf{Be}\left(\mathbb{E}_{q}[X]\right)\leqslant\mathsf{KL}(\mathsf{P},\mathsf{q})\right)$ Proof by upper-bounding $KL((PO\mu)^{1_{E}}, (OO\mu)^{1_{E}})$ Br ((Pap)(E)) Br (Rep (E))

The chain rule - A generalization of the decomposition of the KL between product-distributions we will need it in a special case only, when the joint distributions follow from one of the marginal distributions via a stochastic Rennel. Definition let (Ω, F) and (Ω', F') be two measurable opaces; we denote by $\mathcal{P}(\Omega', F')$ the out of probability measures over (π', F) . Λ (regular) stochastic kernel K is a mapping $(\Omega, F) \longrightarrow \mathcal{P}(\Pi', F)$ $\psi \longmapsto K(w, \cdot)$ what $\forall \mathbf{B} \in F'$, $\psi \longmapsto K(w, B)$ is F-measurable Non consider two such kernels Kand L, and two probability measures Pand Rover (1,F). Then KP and LR defined below are probability masures over $(\Sigma \times \Sigma', F \otimes F')$, by some extension theorem (cantheodory) VAEF, VBEF', $KP(A \times B) = \int I_A(w) K(w, B) dP(w)$ is indeed measurable

retter exists some countable collection (Qm)m32 of open orts of -2' ouch that each open set V of r' can be written V= U O; that is, as a constable union of elements of (Om) m 31 E: Σ' a separable metric space \rightarrow we will conside $\Sigma' = [0, 1] \times (\mathbb{R} \times [0, 1])^{N}$ 3) A typical hernel is given by $K(w, B) = IP(Y \in B | X = X (w))$ The chain rule then rewrites: KL(P^{XP)}, Q^(XP)) = KL(P^{XI}, Q^{XI}) + KL(P^Y, Q^Y) Now we have stated the useful properties of the KL, let's get back to the lower bound. Recall bondit setting - to each arm k is associated a probability distribution 14. E.D. Vk CD. - D is the bondit model () $\subset P_1(\mathbb{R})$

- A bandit instance is denoted by $v = (v_k)_{k \in \mathbb{R}}$ - tool, minimise the regret, which can be rewritten as: $R_T = \sum_{k=2}^{k} \Delta_k E[N_k(T)]$ Bounding the regret > bounding E[N&CT] what with best possible (by an algorithm) bounds? - What is a randomised strategy TT? a requerce of measurable functions (TT), with That Hr = (Uo, Xa(1), U1, -, Xar(1), U1) - The (Hr) = ar+1 hirtory of lawelion transformation for an picked at t+1 first rounds. Lemma: (fundamental inequality for otoehastic bandits) For all bandit publicus $v = (v_k)_{k \in OS}$ and $v' = (v'_k)_{k \in OS}$ in D^K with $v_k \notin v'_k$ for allh, for all strategies and random vaniables 2 taking values in (0,1) that are T(H)-moosurable bright unbry (and T) bright unbry (and T) $E_{\mathcal{A}}[\mathcal{K}_{\mathcal{A}}(\tau)] \quad \mathsf{KL}(\mathcal{H}_{\mathcal{A}}, \mathcal{V}_{\mathcal{A}}') = \mathsf{KL}(\mathcal{H}_{\mathcal{V}}^{\mathsf{H}_{\mathcal{T}}}, \mathcal{P}_{\mathcal{V}}^{\mathsf{H}_{\mathcal{T}}}) \\ \geq \mathsf{KL}(\mathsf{Bu}(\mathsf{E}_{\mathcal{V}}[\mathsf{Z}]), \mathsf{Bu}(\mathsf{E}_{\mathcal{V}}[\mathsf{Z}]))$ tependence instrutyy IT kilden everywhen here.

Prof
• The inequality 2 is a tract application of
the data processing inequality with expectations.
• For the equality:
(a) we show by introdion that
$$P_{V}$$
 ^{HT} = K_T (K_{T-2} (··(K₂ λ.))
ed.
(b) we show by introdion that P_{V} ^{HT} = K_T (K_{T-2} (··(K₂ λ.))
ed.
(c) we show by introdion that P_{V} ^{HT} = K_T (K_{T-2} (··(K₂ λ.))
ed.
(c) when K₁ is the transition beend
(what K_{1} is the transition beend
(what K_{1} is the transition beend
(what K_{1} is the transition R_{1} to N_{2} (R_{1} (N_{2}))
 P_{2} (R_{1} (R_{1})) = N_{12} (M_{12} ° N_{12} (M_{12} ° N_{12} ° M_{12} ° $M_{$

(2) we check that the assumption of the chain rule an interfact.
• the K, an equals transition densities
$$U \in \mathcal{C} B(\mathcal{R}) \otimes B(\mathcal{C}, 2)$$
,
 $h \to K_1(h, E) = \sum_{k=1}^{n} I_{(m, h) \in k} (V_k \otimes A_k)(E)$ is measurable as
 Π_F is measurable (with sequent to considered genes)
• Assumption (\mathfrak{G}) $\forall h$, $K_1(h, k) \leq (K_1(h, k) + \mathfrak{s} \vee h)$, $V_k \ll V_k$ by $\mathfrak{s} = \frac{1}{2}$
• Assumption (\mathfrak{G}) $(h, (g, n)) \longmapsto \frac{1}{dK_1(h_1)} (g_1 n) = \sum_{k=1}^{n} I_{(\pi_k(h), e)} \frac{dW_k(g_1)}{dW_k(g_1)}$
is indeed be measurable (personal functions)
(3) We then many apply the class rule and also by induction the desired recell brand on:
 $-KL((R_g^{M_1}, R_g^{M_2})) = KL(\lambda_{0, \lambda_0}) = 0$
 $-G_n + 70, KL((R_g^{M_1}, R_g^{M_2})) + \int KL(K_{m_1}(h_1), K_{10}^{m_1}(h_1)) dR_{7}^{m_1}(h)$

 $= KL(IR'', IR'') + \sum_{k=1}^{K} KL(\gamma_{k}, \eta_{k}') \cdot \left(1_{\pi_{k}, (h)=k} dR''(h)\right)$ $E\left[1|_{(h+1)}=k\right]$ $= E\left[1|_{(h+1)}=a\right]$ $= KL(IP_{r}^{H_{r}}, IP_{r}^{H_{r}}) + \sum_{k=1}^{K} KL(v_{k}, v_{k}) E[1]_{(ar+2-k)}$ hy induction $KL(\mathcal{R}_{v}^{H_{T}}, \mathcal{R}_{v}^{H_{T}}) = \mathcal{T} Z KL(\mathcal{N}_{a_{1}}, \mathcal{N}_{e'}) \mathbb{E} [\mathcal{I}_{a_{1}=k}]$ = $\xi K L (\eta_{a}, \eta_{a}) E [N_{a}(\tau)]$ D We are now equipped to prove the lower bound. - α strategy is consistent with a model D if. for all boundit instances $v \in D^{k}$, $\forall \alpha \in (0, 1]$, $\forall k \circ k \mathrel{D_{k}} > 0$, $E[Ne(T)] = o(T^{\alpha})$. for well behaved models, there exist consistent strategies g. UCB with D= P(O,S).

(orymptokie) typical bounds for good strategies $\forall v \in \mathcal{D}^{K}, \forall k \in I \quad \mathcal{D}_{R} > 0, \quad \lim_{T \to \infty} \frac{\mathbb{E}[N_{k}(\tau)]}{\ln T} \leq C_{R}(\tau)$ optimel such term: $C_{k}(v) = 1$ pobler dyndent $K_{inj}(v_{k}, \mu^{*}, D)$ term where $\operatorname{King}(v_{k}, p^{o}, D) = \inf_{i \neq j} \left\{ \operatorname{KL}(v_{k}, v_{k}') \right\}$ $\mathcal{L}(\mathbf{v}_{k}) > \mathcal{P}(\mathbf{v}_{k})$ me will now pove one part of this optimality: a love bound. on ER(v). Theren (Lai and Robbens, 1985, Burnatas and Katebabis, 1996) For all boundet models $\mathcal{D} \in \mathcal{P}_{2}(\mathbb{R})$, for any consistent obsetsagy wit \mathcal{D}_{1} for any bondit instance $\nu \in \mathcal{D}^{K}$, limit $\frac{\mathbb{E}[N_{a}(T)]}{l_{nT}} \gg \frac{1}{k_{mg}(v_{a},\mu^{T},\mathcal{D})}$ for all suboptimal arms k(ie DA70), Conclary for all bondit models D, any consident straky wit D, all boarditinstances

Proof of the theorem (based on the limits)
King (VA. D. p⁰) = inf (KL (VA, VL) |
$$v_{k}^{i} \in D$$
, $v_{k}^{i} \ll v_{k}^{i}$ and $E(v_{i}^{i}) > p^{*}$]
(arrestore of $f = 100$
This is using the will :
 $-f_{i} \times D$, to by T, V and R a.t. $\Delta p > 0$ (T is convicted of D)
 $-f_{i} \times n^{i}$ all sign V' with
 $\begin{cases} v_{i} = v_{i} & f_{i} \neq 0 \\ v_{k} = t & v_{k} \in D \end{cases}$, $v_{k} \ll i$ and $E(v_{i}^{i}) > p^{i}$.
That is verify differ at h , the unique of the v' .
 $- Tobe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{i}$ which
 $The (v_{k}, v_{k}) > N(1)$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] - v_{k}$ with
 $= robe = \frac{1}{2} = \frac{Na(1)}{T}$ which is $[0, \Delta] + \frac{1}{2} = \frac{Na(1)}{T}$ which is $\frac{1}{2} = \frac{1}{T} = \frac{1}{T}$

 $\overline{20} = \ln 2$ $\overline{2} - \ln 2$ $\overline{2} - \ln 2 + (1 - p) \ln \left(\frac{1}{1 - q}\right) \quad p \quad oll \quad (q, q) \in [e, 1] \quad (and even for p) \in [e, 1] \quad (e(e, 1)) \quad$ to is consistent, 201 - instance of -) his subsystemal Ex (NeCT) - 0 -instance $v' \rightarrow oll ; \neq k$ are suboptimil: for only $x \in [0, 1]$, $\mathbb{E}_{v} [N:(T)] = . (T^{x})$ $= \operatorname{perficular} = - \mathbb{E}_{v} \left[\operatorname{Na(t)} \right] = \frac{1}{2} \mathbb{E} \left[\operatorname{Na(t)} \right] = O(\tau^{*})$ $\frac{1}{1-\mathbb{E}_{\nu}\left[\underbrace{\mathbb{N}_{\nu}(\tau)}{\tau}\right]} = \frac{\tau}{\tau} = \frac{\tau}{o(\tau^{\nu})}$ > T^{1-x} for Tlage enough Substituting book and dividing by ln T: for any x t (0, 1) and Then crough $\frac{\mathbb{E}_{v}[N_{a}(\tau)]}{\ln \tau} \frac{k \left(v_{e,v_{e}}\right)}{\sqrt{1-\frac{1}{n\tau}}} = \frac{\ln 2}{\sqrt{1-\frac{1}{n\tau}}} + \left(1-\frac{1-\frac{1}{n\tau}}{\sqrt{1-\frac{1}{n\tau}}}\right) \frac{\ln (t^{n,e})}{\ln \tau}$ thus limit $\frac{E_{v}(N_{h}(t))}{1-s+\infty} \xrightarrow{(1-x)} (1-x) \qquad (1-x) \qquad$

This exercise aims at showing a minimax lower bound of the regret of the form $R_T \ge c\sqrt{KT}$. We restrict ourselves to the bandit model $\mathcal{D} = \{\mathcal{N}(\mu, 1) \mid \mu \in \mathbb{R}\}$, but similar arguments can be used for more general models (e.g. Bernoulli bandits). Fix in the following $K \ge 2$ and $T \ge \frac{K-1}{2}$. The minimax regret is defined as

$$R_T^\star = \inf_{ ext{strategy } \pi ext{ instance }
u} \sup_{
u} \mathbb{E} [R_T(\pi,
u)]$$

Let $\varepsilon > 0$. We consider in the following K + 1 bandit instances $(\nu^j)_{j \in [K+1]}$, where

$$\nu_k^j = \mathcal{N}(0, 1) \quad \text{for any } k \in [K] \text{ such that } j \neq k$$
$$\nu_k^k = \mathcal{N}(\varepsilon, 1) \quad \text{for any } k \in [K].$$

1) Justify that

$$R_T^{\star} \ge \inf_{\pi} \sup_{\varepsilon \in (0,1)} \max_{i \in [K]} \varepsilon(T - \mathbb{E}_{\nu^i}^{\pi}[N_i(T)]),$$

and that for any strategy π , there exists k_0 such that $\mathbb{E}_{\nu^0}[N_{k_0}(T)] \leq \frac{T}{K}$.

2) Use the fundamental inequality and Pinsker's inequality to show that

$$\mathbb{E}_{\nu^{0}}[N_{k_{0}}(T)]\frac{\varepsilon^{2}}{2} \geq 2\left(\mathbb{E}_{\nu^{0}}[\frac{N_{k_{0}}(T)}{T}] - \mathbb{E}_{\nu^{k_{0}}}[\frac{N_{k_{0}}(T)}{T}]\right)^{2}.$$

3) Combine the above results to derive

$$R_T^{\star} \ge \sup_{\epsilon \in (0,1)} \epsilon T \left(1 - \frac{1}{K} - \epsilon \sqrt{\frac{T}{2K}} \right)$$

and conclude that $R_T^{\star} \geq \frac{1}{8\sqrt{2}}\sqrt{KT}$.

Solution: 1) The first point is just taking a subset over all the possible instances and rewriting the regret as $\varepsilon(T - \mathbb{E}_{\nu^i}^{\pi}[N_i(T)])$. The second point is because the sum over all k is equal to T, so at least one of them is below (or equal) to the average. 2) Direct use of fundamental inequality and Pinsker's inequality, with the fact that for $i \neq 0$, $\operatorname{KL}(\nu^0, \nu^i) = \frac{\varepsilon^2}{2}$.

3) We have

$$\mathbb{E}_{\nu^{0}}[N_{k_{0}}(T)]\frac{\varepsilon^{2}}{2} \geq 2\left(\mathbb{E}_{\nu^{0}}[\frac{N_{k_{0}}(T)}{T}] - \mathbb{E}_{\nu^{k_{0}}}[\frac{N_{k_{0}}(T)}{T}]\right)^{2}.$$

So that $\mathbb{E}_{\nu^{k_0}}\left[\frac{N_{k_0}(T)}{T}\right] \leq \mathbb{E}_{\nu^0}\left[\frac{N_{k_0}(T)}{T}\right] + \varepsilon \sqrt{\frac{\mathbb{E}_{\nu^0}[N_{k_0}(T)]}{2}}$. Since $\mathbb{E}_{\nu^0}[N_{k_0}(T)] \leq \frac{T}{K}$, this implies

$$\mathbb{E}_{\nu^{k_0}}\left[\frac{N_{k_0}(T)}{T}\right] \le \frac{1}{K} + \varepsilon \sqrt{\frac{T}{2K}}.$$

This then yields

$$R_T(\pi,
u^{k_0}) \ge \varepsilon T\left(1 - rac{1}{K} - \varepsilon \sqrt{rac{T}{2K}}
ight).$$

Using question 1), this yields the first point, by noticing that the bound actually does not depend on the choice of the strategy π . We conclude by taking $\varepsilon = \sqrt{\frac{K}{2T} \frac{(K_1)^2}{K^2}}$, which is smaller than 1 since $T \geq \frac{K-1}{2}$, and noticing that for $K \geq 2$, $\frac{K-1}{K} \geq \frac{1}{2}$.