
Lecture#3 : Stochastic bandits (prt
ullInformation setting

At each round =1
.....
Ti

· agent picks an arm ar Ext ..... F] (possibly afrandom)
· observes Leward vector /CHE0

.
1

Iarin r(U .
X...(1) measurable

possible↑
andomisation

gets rward Xar(f).

↳ma
As learning with experts-but : ·

rewards instad of loss (fr =--1-x(8)
· choose preactions (simple (--())

butanrandomise over actions ,

The XIH were choren advisacially (warst se in 1ot Lecture.

What if instead they are stochastic ?

Assume
.( are ind.

· tell ~ Wen with Exa = Me.

Problem should be casier ?

↳ not really : we proced the lower bound in this setting :

for anyalgorithm -with Ber(1)

Et



However , we can have much better results with the

preudo-regret:

↑ =nayM
↳ expectation wat the realizations ofXr)
but still a random variable!

revious exampleyiels = 0
.

Makes sense : ve cannot
guess

in advance

head a tail

⑪Warning: EFERE
Actually , FRESTEP . Why ?

I

*TwMr
-> from new on ,

we will white Po for the prends-reget.

Nations : · Mo= mes le

· Ar = proper (90 frent anse
· D = min Ak

Gr Ak28



·Ne(t) Hart number of pulls on annb

Lemona !

For any policy 1
.

P= Des Nett

Inof :

Pr= M. Mar

=Ma

Mar
= De Nul W .

Leedyalgorithm Ia Follow The Leader

choose as arbifrarily
Fat 32:

anEaguna toal



Therem For any Ge.....Mr. and TEN - Greedy

satisfirs in the Full Information setting :

F fa

Let us bound ENalT for any
h with ARSO .
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-amditSetting (random table model

At each round =1
.....
Ti

· agent picks an am ar Et ..... F] (possibly atrandom)
· observes and gets reward Tag e01 & an in rive-Une-measurable

↳mer
-> only observe the reward of the pulled arm

-> explorationus exploitatioKade-off-

estimate optimal maximize reward
which

arm by pulling allserms by pulling arm

seems
the best

This setting is sometimes called random table model and is known to

be equivalent (from aprobabilistie point of view) No the following stack of rewards
model.

-anditSetting (stack of rewards model

At each round =1
.....
Ti

I · agent picks an am ar Et ..... E] (possibly atrandom)
· observes and gets reward Nalware e So#

& an in Vive --Your-mesurable

same definition of reut



Stack of rewards model allows casie profs ,
but heavier in motations.

Unless specified otherwise
,

we will consider the random table model in the following.

Notation
.Milt=a Has2. Cempirical ma

Random stach--M)=

Creedyalgorithm (Banditsetting
Fort=1

.. Ki

ar = f

Fat 3+1 :

anEaguna Macr.1

Therem For r = Ber(5)E
= Buff) : Greedy ratifie

in the banditsetting :

*P

Ef P(Xm(1 = 0
.X = 1) = (t)=

If 1211 = 0 and /(2) =1
, Greedy will keep polling the arm 2

until Tr so that
EN

Greedy does not explore enough . In can undeestimate the optimal arm and never

pull itgain.



E plane them - Commit algorithm
parameter n ENo

For E1
....
n ; exples by drawing each ar n fines.

For&n+1 :

pull the bestempinicalarm until the end
,
ie

ar Zagua
simple algorithm clearlyseparating explication from exploitation .

Theren :
Fasy andysis .

For
any KMT ,

Et

has expected regrett
#Antep

Infir Ne
if n *. Nact) = Lf FagM

U

↳*n De Honda Hazag Mainth= 1

Let ho=

myna Me Impes
#CRIX nEAn + (onDa (E = agent

↓AA(



IP(fin Marini) = 1P(Yals)-Bel30
= IP(elMet-WemD

-Ar

Hoeffling: e #

· n Poolage - explere too much

· i too small - not enough exploration , nightpull sutoptimal arm for TonFsteps.

what I should we choose?

yo A = min A and n

ECRInt
· Actually , we even showed a high probability reget bound, i . e with

n =/ ET certific with probability at bast 1-

RT

· ITC is easy
to analyse -> direct application of Hoeffeling insquality

Yet
,
this use of Hoeffding ineg .

is not always possible
.

Instad
,
we us the following concentration lemma.



Lemma : (Bandit concertation
For
any

bandit algorithmany be .
tein

.
Je(0,1)

IP(Ma-M ↑

iP(pec) -Ma
I This is not a trivial

consequence of Hoeffling insquality
&

NeCH is a random reniable and Mach .Na amenotindependent
Hoffeling inequality

indeed
gives

- In(1/5)

Pral-m =

But her , a is arandom variable and is not idependent from Mach

· What if instead we used Azuma-Hoeffeling on Hal pa Has = 2)
?

I

montingale incement bounded between

-Ma and 1-ME

Ip(Wale) -MesHach Fr

iP) ment-ma Th
differences withaurLemma

getting wid
of this factor is a bigdeal !



↑

Roof1 (stach of rewards moded)

= Wels) ·pa) Mur-Mar Ever

Hoeffeing inequality yields for any
n.

Pz
Macover

, Ne (H) 10. a . s
. so we can do a union bound :

Ibound is automatie fu n = of
IPEne1

so that in particularp * 55 by inclusione

Symmetric arguments for the second inequality.
Roof 2 Grandom table model

p

Let Zu= (Vels) ·M) Hask -

Mal-Ma

Hereusing a union bound on all the possible values of (Has =2) =z .. r
is a bad idea...

1) Wefirst prove that Vue, Eeu-1
For that, we show that Mr = exp(x7n-NCH) is a supermactingale no that

#MrEM = 1
.

Let Fre = DU
.
Tas( - --- Yar. Co

Ar is Fr ·1 masurable , so that:



#M/Fr =
Escal ·Mal Hana Fre] Mon

=TentameHare + Harte) Mus

Hoffling's Cemma (conditional) givenTekarmar
#Team-Ma 41 .

in EM/F Haret Harte) Mr
. e

* Mr. 1.

A we showed Eteur-Na1

2) We now pore
that VESO

,
finit

p(rE and Na = n) e-
Indeed

, by Markov-chernoff bounding for any 250 :

PlErE and NeC =m) eueNeC
- ne+Heu)-l

* eutenentr to 1-3

Toding x= finally yields

Par and Nal =n)e



3) We conclude using
a union bound : (as in the stach of rands model

IP(n)-MeMama and Nell= m

=E and Nace

=/ andNe

*en #

Notes on
thes prof:

· We saw lost week that the conditional version of Hoeffeing's demma
could be generalized into

X sounded random variable
,

U
.
V two g-measurable random variables with UXXXV as

ten
Fy ER, enetg) FyExig] + j(vu)

This can be applied to Er = (YaCH-mal Elar-2

g = Fr

Vr =
-Mar =a)

No = 11a) Har =a)

and directly entailsma Laral(exp without the

need for the
1= Apres + Marthy Erick used in Step 1.



·
The question is : Don't we have ageneralized version of the Huffing -Azuma inequality

with such predictable ranges Vr-Ur ?

Yes , me do have something in terms of constant upper bounds N -Or Dr ER as

but VW-Ur = Apriay can only be bounded by Dr =1 her
, so steps 2) and

3) are still needed.

· for unboundedbut Tub-Causian variablesal ,we
still have thanks to the

stackafewardsmocl : IP(Ma-M

Exeedy requence of probabilities Er
.

Fort=1
.. Ki

ar = f

Fat 3+1 :

will probe En ar
~ /E explore uniformly at random

&with pober 1er / anEagua Mech1

-hewheialagerouge
universal constant

R (DulnT +1)



Iof In any
& with Daso.

P (a =b)(1) M (r-1)

+ Pat2) -Me/- E .

IP) pen (2) -

per 3 A pa-MandN whO

n= Lar/ +1

↳I

↑ P(NeCEn
- place +

&
number of times Is pulledandowing the spe

Enr = 1=Es

(N))
Lecture #

Recall-Bernstein Inequality
Let Xa.. Xn be andom naniables in 50

. 11 et VanEleme = Tr

Than for all 520 :

po exp

to her for urns



Neh u=(Vr1- -

-exp
Morraven:min(1

I

Ers,= ·= =(+1

*th
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this yorlds for a lage enough c and

us1 ,

Plan = 2) =0t e that for large enough ic :

so flat:

plan=)e2

+ 1

hence regut is hounded or;

R

(t) +1 #

does not depend
on any parametis (p .

V
.
B

,
T ...

Remarks .
the bound above is called instance dependent as if heavily

relies on parametus of the instance Do

Adifferent choice of Er can lead to the following distributionfree
bound for E-creedy :

+2)



Two main drawbacks of these methods : +C and Egrendy

· they require knowledge of D.

· they scale in 1 Cart in distribution-free bounds

This is because they use auniform exploration : eacharm is explored the

same amount of tine. exploration rounds depend

↓ on partobservations.

A better strategy is to me an adoptive exploration : better
arms ar explored

mor often .
Theidea is that a very

bad arm is quicker to detect as

seeb-optimal

Marover ,
ETC needs knowledge of

T

.

-> ift is unknown
,

we can use the doubling trickIn any algo


