Exercises Sequential Learning

Exercise sheet n°2

Exercise 1 :
In this exercise, we are going to compare the

of UCB on E[Ny(T)].

1 . 8
Rt ox D7) lower bound, with the A7 upper bound

1) For p,q € [0, 1], we denote kl(p, ¢) = KL(Ber(p), Ber(q)). Show that for any p,q € [0, 1],
kl(p, q) > 2(p — q)*.

2) Let (©2,F) be a measurable space and P,Q be two probability distributions over (£2,F).

Show that
1
sip [Bs[7] - Eg[2]| < 1/ KL(E, Q).
Z, Z is F measurable

taking values in [0,1]

3) Pinsker’s inequality: Show that under the same conditions as 2), we have
1
1P = Qllrv = sup [P(A) — Q(A)] < 1/ 5KL(E, Q).
AeF

Using refined versions of UCB (and its analysis), we can even get the following asympotic upper
bound for any D C {v | v is 0 sub-Gaussian} and v € D:

C ENJ(T)] _ 202
1 <2
T () A2

4) Assume in this question that D C P([0, 1])
(a) What does the above upper bound becomes when D C P([0,1])?

(b) Exhibit a lower bound on Kj,¢(v, D, 1*) in that case and compare with the above upper
bound.

(c) Can you give an example where the known lower bound and the above upper bound differ?

5) Show that if D = {N(u,1) | 4 € R}, then Kine(vy, D, %) = == and comment.
k
Exercise 2 :

This exercise aims at giving a lower bound on the number of pulls of a suboptimal arm for small

time horizons. We use the same notations as in the previous exercise.
1)
(a) Establish the following local version of Pinsker’s inequality:

1
forany 0 <p<q<1, K(pq) >

2
T 2maXep,q (1 — ) (p—q)".

Why is it stronger than Pinsker’s inequality?
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(b) Deduce that it yields

1
forany 0 <p<q<1, Xkl(p,q) > 2_(p g2
q

2) A strategy is said non-naive if for all bandit instances and k such that p, = p*, E[Ny(T)] > <.
Show that for all non-naive strategies and for any instance v:

1 T

< —— >

VT < 8KL*,‘V’/{: € [K], E[N(T)] > e
where KL* := k%?icoKmf(Vk,D,u ).

Hint: Consider the same alternative bandits instance v/ as we did in the course, when proving
the asymptotic lower bound.

Exercise 3 :
Consider an alternative version of MOSS algorithm, where Uy(t) is replaced by the following

value:
Ui(t) = n(t) + \/ v (NL@)

1) Show that there is a universal constant ¢ > 0, such that for any ¢ > 0 and any ¢ € N,

N 1 t c
P (Mk — f(t) > \/Nk(t) In; (Nk(t)> +€> < e

. 1 t c
and P (Mk(t) — pg = \/Nk(t) Iny (Nk(t)> +€> < ot

Hint: Use a peeling argument as in the proof of MOSS.

2) Deduce that the regret of this algorithm can be bounded as

RT S C/ ( Z IHA(,-Z> +Ak> )

k,Ap>0

where ¢’ is a universal constant.
Bonus: show that we can even have the tighter bound (for another constant )

In, (TA}) + 1) .

BIN(T)] < ¢ (P15

3) Admit for this question that for any o € [0, 1],

e min (au, M) < max (ca, y/alu(/a) ) .

u>0 u
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(a) Using the previous bonus question, show that there is a universal constant ¢ such that for
any k € [K],

AGE[NL(T)] < ¢ max(%, \/E[Nk(T)] In (%)) +c.

(b) Show that the modified MOSS satisfies the following distribution free bound
Rr <d(VKTIn(K)+ K),
where ¢ is a universal constant.

Exercise 4 :
Consider th K-armed stochastic contextual setting (setting 1 in lecture 8) and assume that
C = [0, 1] and the reward function is (L, «)-Holder for o € (0, 1]:

Vk € [K],Ve,d € C,|r(k,c) —r(k,d)| < Lle = |

Build an algorithm with a regret bound (to prove) of order

Rr=0 <L2a1+1 K?aa+1 T2O;T1) .

Exercise 5 :
Consider in this exercise a bandit instance v € DX such that

e D= {N(u1) | p € R};
e v has a unique optimal arm.
We define for any v/ € DX:
K
!~

a*(V') = argmax _ inf E apKL(v, 77,).
acPx  V'€Daw —1

1) Show that

a'v = argmax ®(v, a)
a€Pk

1 QU=
where (v, a) = 5 ]ICI;lkH %
* QU+ (67X

A2,
2) Justify that ®(v, ) is a concave function of a.

3) Show that a*(v) is unique.

4) Show that a* is continuous at v.
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