
Exercises Sequential Learning

Exercise sheet n°2
Exercise 1 :

In this exercise, we are going to compare the 1
Kinf(⌫k,D,µ?) lower bound, with the 8

�2
k

upper bound
of UCB on E[Nk(T )].

1) For p, q 2 [0, 1], we denote kl(p, q) = KL(Ber(p),Ber(q)). Show that for any p, q 2 [0, 1],

kl(p, q) � 2(p� q)2.

2) Let (⌦,F) be a measurable space and P,Q be two probability distributions over (⌦,F).
Show that

sup
Z, Z is F measurable
taking values in [0,1]

|EP[Z]� EQ[Z]| 

r
1

2
KL(P,Q).

3) Pinsker’s inequality: Show that under the same conditions as 2), we have

kP�QkTV := sup
A2F

|P(A)�Q(A)| 

r
1

2
KL(P,Q).

Using refined versions of UCB (and its analysis), we can even get the following asympotic upper
bound for any D ⇢ {⌫ | ⌫ is � sub-Gaussian} and ⌫ 2 D:

lim sup
T!1

E[Nk(T )]

ln(T )


2�2

�2
k

.

4) Assume in this question that D ⇢ P([0, 1])

(a) What does the above upper bound becomes when D ⇢ P([0, 1])?
(b) Exhibit a lower bound on Kinf(⌫k,D, µ?) in that case and compare with the above upper

bound.
(c) Can you give an example where the known lower bound and the above upper bound differ?

5) Show that if D = {N (µ, 1) | µ 2 R}, then Kinf(⌫k,D, µ?) = 2
�2

k
and comment.

Exercise 2 :

This exercise aims at giving a lower bound on the number of pulls of a suboptimal arm for small
time horizons. We use the same notations as in the previous exercise.
1)

(a) Establish the following local version of Pinsker’s inequality:

for any 0  p < q  1, kl(p, q) �
1

2maxx2[p,q] x(1� x)
(p� q)2.

Why is it stronger than Pinsker’s inequality?
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(b) Deduce that it yields

for any 0  p < q  1, kl(p, q) �
1

2q
(p� q)2.

2) A strategy is said non-naive if for all bandit instances and k such that µk = µ?, E[Nk(T )] �
T
K .

Show that for all non-naive strategies and for any instance ⌫:

8T 
1

8KL? , 8k 2 [K], E[Nk(T )] �
T

2K
,

where KL? := max
k,�k>0

Kinf(⌫k,D, µ?).

Hint: Consider the same alternative bandits instance ⌫ 0 as we did in the course, when proving
the asymptotic lower bound.

Exercise 3 :

Consider an alternative version of MOSS algorithm, where Uk(t) is replaced by the following
value:

Uk(t) = µ̂k(t) +

s
1

Nk(t)
ln+

✓
t

Nk(t)

◆
.

1) Show that there is a universal constant c > 0, such that for any " > 0 and any t 2 N,

P
 
µk � µ̂k(t) �

s
1

Nk(t)
ln+

✓
t

Nk(t)

◆
+ "

!


c

t"2

and P
 
µ̂k(t)� µk �

s
1

Nk(t)
ln+

✓
t

Nk(t)

◆
+ "

!


c

t"2
.

Hint: Use a peeling argument as in the proof of MOSS.
2) Deduce that the regret of this algorithm can be bounded as

RT  c0
 
X

k,�k>0

ln(T )

�k
+�k

!
,

where c0 is a universal constant.
Bonus: show that we can even have the tighter bound (for another constant c0)

E[Nk(T )]  c0
✓
ln+(T�2

k)

�2
k

+ 1

◆
.

3) Admit for this question that for any ↵ 2 [0, 1],

max
u>0

min

✓
↵u,

ln+(u2)

u

◆
 max

⇣
e↵,
p

↵ ln(1/↵)
⌘
.
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(a) Using the previous bonus question, show that there is a universal constant c0 such that for
any k 2 [K],

�kE[Nk(T )]  c0 max(
E[Nk(T )]

p
T

,

s

E[Nk(T )] ln

✓
T

E[Nk(T )]

◆
) + c0.

(b) Show that the modified MOSS satisfies the following distribution free bound

RT  c0(
p

KT ln(K) +K),

where c0 is a universal constant.

Exercise 4 :

Consider th K-armed stochastic contextual setting (setting 1 in lecture 8) and assume that
C = [0, 1] and the reward function is (L,↵)-Hölder for ↵ 2 (0, 1]:

8k 2 [K], 8c, c0 2 C, |r(k, c)� r(k, c0)|  L|c� c0|↵.

Build an algorithm with a regret bound (to prove) of order

RT = O

⇣
L

1
2↵+1K

↵
2↵+1T

↵+1
2↵+1

⌘
.

Exercise 5 :

Consider in this exercise a bandit instance ⌫ 2 D
K such that

• D = {N (µ, 1) | µ 2 R};
• ⌫ has a unique optimal arm.

We define for any ⌫ 0
2 D

K :

↵⇤(⌫ 0) = argmax
↵2PK

inf
⌫̃02Dalt(⌫0)

KX

k=1

↵kKL(⌫ 0
k, ⌫̃

0
k).

1) Show that

↵⇤⌫ = argmax
↵2PK

�(⌫,↵)

where �(⌫,↵) =
1

2
min
k 6=k⇤

↵k⇤↵k

↵k⇤ + ↵k
�2

k.

2) Justify that �(⌫,↵) is a concave function of ↵.

3) Show that ↵⇤(⌫) is unique.

4) Show that ↵⇤ is continuous at ⌫.
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