Exercises Sequential Learning

Exercise sheet n°1

In this session, we consider online learning with experts (see Lecture #1) with linear losses. The
losses ¢;; are in [0, 1] when not precised otherwise.

Exercise 1 :
Consider online learning with experts (see Lecture #1) with linear losses. Show that no strategy

satisfies for all sequence ({1, ... €Nt) e ([o, 1]N)N:
il by =
23t~ 3 iy = o).

Exercise 2 :
Consider online learning with experts (see Lecture #1) with linear losses. Assume in this exercise
that ¢;, € [m, M], with m, M € R unknown. How can we tune n?
We consider in the following EWA with adaptive rates (1)
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1) Show that if (7;) are non-increasing
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Hint: Use the fact that z — x ™+ is convex.

2) Show that if (7;) are non-increasing, then the regret of EWA satisfies:

T
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RT<n—+25t,
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where §; = E pjtlit —|— — ln ( g pjte_mejt)

Hint: Multlply by the logarithm of the expression obtained in 1) to make a telescopic sum
appears.

Recall the Bernstein’s inequality for a random variable X € [m, M]|:

e"M=m) 1 — (M —m)

nX] «
Vi > 0, WE[e"™) < gB(X] + —— 35

Var (X).

We now consider EWA with 7, = with the convention that lnN = +00.

Zt 16 )
3) Let v, = Z?le(@‘t - chvzl Prelie)*pie-
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ne(M —m)
emM=m) —p (M —m)—1
(b) Deduce that v, > 277—5: — 2(M —m)é,.

(a) Show that v, > (M —m)dy.

4)

T 2 T
2
(a) Show that ( E 5,:) < ;1 vuIn N+ (M —m)(1+ 3 In N) ;1 dt.

=1
(b) Finally, show that Ry < (M —m)VTInN + (M —m)(2+ 3InN).

Exercise 3 :

1
Consider the e-greedy algorithm with £, = min (1, Uﬂ?%) for any t € N. Show that for a

large enough universal constant C' > 0, the regret of e-greedy satisfies
Ry < CT5 (K In(T))s.
Hint: Bound the instantaneous regret E[A,,].

Exercise 4 :
Concentration for sequences of random length. Let X, X5, ... be a sequence of indepen-
dent standard Gaussian random variables defined on probability space (€2, F,P). Suppose that
T:Q —{1,2,3,...} is another variable and let iy = Z;le % be the empirical mean based on
T samples.

1) Show that if T is independent from X, for all ¢, then for any 6 € (0, 1)

P(ﬂTz w%d

2) Now relax the assumption that 7" is independent from (X;);. Let E;, = 17—, and F; =
o(Xi,...,X) be the o-algebra generated by the first ¢ samples. Let 6 € (0,1) and show there
exists a random variable T" such that for all ¢, F; is F;-measurable and

. 21n(1/6)

Hint: You can use the law of the iterated logarithm, which says if X, X5,... is a sequence of
independent and identically distributed random variables with zero mean and unit variance, then

"X
lim sup 7Zt:1 !
n—oo V2nlnlnn

=1 almost surely.

3) What is the relation between the above inequality and our concentration lemma for the
empirical means in bandits problems? Do 2) and our lemma contradict? Why?
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Exercise 5 :
Phased SE. Consider the following phased Successive Eliminations algorithm parameterized by
a > 1.

Algorithm: Phased Successive Eliminations

input: 7, a > 1

K+ [K]

(<0

while Card(K) > 1 do
pull all arms in K [a*] times
for all k € K such that i, + | #5h < maxiex fis — 1/ 7igy do K« K\ {k}
C—0+1

repeat pull only arm in I until t =T

1) Show a regret bound similar to Successive Eliminations algorithm.
2) What is the role played by a?

Exercise 6 :

Adapting to reward variance. Let X;,..., Xy be a sequence of i.i.d. random variables
with mean pu, variance o? and bounded support so that X; € [0, M] almost surely. Define the
estimators
| N
UN = N Z Xy

We admit in the following the empirical Bernstein inequality:
262 3M
P <\ﬂN —pl = %ln(3/5) + Wlﬂ(3/5)> <.

1) Show that the Bernstein inequality in the course implies here

2 2
2%

P (m — 1 2 /S n(2/6) + 2_%111(2/5)) <5

Comment on the differences between the two above Bernstein inequalities.
~ N ~
2) Show that 6% = + >, (X; — p)? — (v — p)*.

3) Is 62 an unbiased estimator of 02?7 If not, can we easily make it unbiased?
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4) Show that

2M?3?c? 2M?
~2 > 2 \/ <
IP’(J >0+ N In(1/9) + AN 1n(1/6)> <0

Hint: Use Bernstein inequality of 1).

5) (Hard) Consider a bandit setting with K arms, bounded rewards X (t) € [0, M] and the
variance of the k-th arm is o7. Design a policy that depends on M, but does not need to know
o, a priori, such that there exists a universal constant C' > 0 with

2
Rr<C Y (Ak+ M+A)lnT>
k,Ap>0

Hint: Without the stack of rewards model, the empirical Bernstein inequality can be extended
(up to some changes) to cases where NN is a random variable.

Exercise 7 :
This exercise studies the celebrated Thompson sampling algorithm, described below.

In words, Thompson sampling starts with a prior distribution py distribution on the (mean)
parameters of the bandits instance and at each round ¢, it draws random samples 6 (t) from the
posterior distribution p;_; on the instance parameters at time ¢ — 1, which is defined as

pi1(A) = P((M, co i) €A ]-",5_1> for any A € B(R), (1)

where Fy_1 = o| Uy, Xo, (1), Uz, X0y (2), ... X, , (t — 1)) and the U, are random variables uni-

formly drawn in [0, 1], that are independent with all other variables.

Algorithm: Thompson sampling

input: prior distribution p,

fort=1,...,T do
Sample 6(t) ~ p;_;
Pull a, € argmaxy.e(g) Hk(t) // Ties broken arbitrarily
Update p; as the posterior distribution of the parameters, following Bayes rule.

We note for each time ¢t € N and arm k € [K]:
t
t) = ZXk(S)]l —
s=1

1) Consider an instance of Bernoulli bandits, i.e., D = {Bernoulli(u) | p € [0,1]}*. Show then
that in the case of Bernoulli rewards with a uniform prior, at each time t € N, p,_; is the
joint distributlion of K independent Beta distributions, where the k-th Beta distribution has
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parameters (Sk(t — 1) + 1, Ni(t — 1) — Sk(t — 1) + 1). In other words for any ¢t € N, the drawn
samples 0 (t) are independent with each other conditioned on F;_; and

0,(t) ~ Beta(Si(t — 1) + 1, No(t — 1) — Syt — 1) + 1).

2) Consider now that the prior is the improper uniform distribution! on R and Gaussian bandits
with variance o2, i.e., D = {N (1, 0?) | p € R}".
For any ¢t € N, what is the distribution of p;_; in this case?

IThis can be seen as the uniform distribution on R. It is not a proper distribution, since it is not of measure 1, but
the Bayes rule can still be applied with it.
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