Exercise session ${ }^{\circ} 6$: Contextual bandits and Best Arm Identification

Exercise 1 :

Consider th K-armed stochastic contextual setting (setting 1 in lecture 8) and assume that $\mathcal{C}=[0,1]$ and the reward function is (L, α)-Hölder for $\alpha \in(0,1]$:

$$
\forall k \in[K], \forall c, c^{\prime} \in \mathcal{C},\left|r(k, c)-r\left(k, c^{\prime}\right)\right| \leq L\left|c-c^{\prime}\right|^{\alpha}
$$

Using ideas similar to Exercise 1 of the Exercise Session $\# 5$, build an algorithm with a regret bound (to prove) of order

$$
R_{T}=\mathcal{O}\left(L^{\frac{1}{2 \alpha+1}} K^{\frac{\alpha}{2 \alpha+1}} T^{\frac{\alpha+1}{2 \alpha+1}}\right)
$$

Exercise 2:

Consider in this exercise a bandit instance $\nu \in \mathcal{D}^{K}$ such that

- $\mathcal{D}=\{\mathcal{N}(\mu, 1) \mid \mu \in \mathbb{R}\} ;$
- ν has a unique optimal arm.

We define for any $\nu^{\prime} \in \mathcal{D}^{K}$:

$$
\alpha^{*}\left(\nu^{\prime}\right)=\underset{\alpha \in \mathcal{P}_{K}}{\operatorname{argmax}} \inf _{\tilde{\nu}^{\prime} \in \mathcal{D}_{\text {alt }\left(\nu^{\prime}\right)}} \sum_{k=1}^{K} \alpha_{k} \operatorname{KL}\left(\nu_{k}^{\prime}, \tilde{\nu}_{k}^{\prime}\right) .
$$

1) Show that

$$
\begin{gathered}
\alpha^{*} \nu=\underset{\alpha \in \mathcal{P}_{K}}{\operatorname{argmax}} \Phi(\nu, \alpha) \\
\text { where } \quad \Phi(\nu, \alpha)=\frac{1}{2} \min _{k \neq k^{*}} \frac{\alpha_{k^{*}} \alpha_{k}}{\alpha_{k^{*}}+\alpha_{k}} \Delta_{k}^{2}
\end{gathered}
$$

2) Justify that $\Phi(\nu, \alpha)$ is a concave function of α.
3) Show that $\alpha^{*}(\nu)$ is unique.
4) Show that α^{*} is continuous at ν.

Exercise 3 :

We aim at proving the regret bound of Track-And-Stop algorithm in this exercise. Assume that ν has a unique optimal arm (recall that $\nu_{k}=\mathcal{N}\left(\mu_{k}, 1\right)$). Make \mathcal{D}^{K} a metric space via the metric $d\left(\nu, \nu^{\prime}\right)=\max _{k \in[K]}\left|\mathbb{E}\left(\nu_{k}\right)-\mathbb{E}\left(\nu_{k}^{\prime}\right)\right|$.
We also define in the following $\hat{\nu}_{k}^{t}=\mathcal{N}\left(\hat{\mu}_{k}(t), 1\right)$ and use the same notations as in the previous exercise (we are going to use the results of the previous exercise).

Let $\varepsilon>0$ be a small constant and define the random times

$$
\begin{aligned}
& \tau_{\nu}(\varepsilon)=1+\max \left\{t \mid d\left(\hat{\nu}^{t}, \nu\right) \geq \varepsilon\right\} \\
& \tau_{\alpha}(\varepsilon)=1+\max \left\{t\left|\| \alpha^{*}(\nu)-\alpha^{*}\left(\hat{\nu}^{t}\right)\right|_{\infty} \geq \varepsilon\right\} \\
& \tau_{T}(\varepsilon)=1+\max \left\{t \left\lvert\,\left\|\alpha^{*}(\nu)-\frac{N(t)}{t}\right\|_{\infty} \geq \varepsilon\right.\right\} .
\end{aligned}
$$

Note these are not stopping times.

1) We are gonna use the first concentration inequality admitted in the proof of the Lemma that guarantees soudness of Track-and-Stop.
(a) Define the random variable:

$$
\Lambda=\min \left\{\lambda \geq 1 \left\lvert\, d\left(\hat{\nu}^{t}, \nu\right) \leq \sqrt{\frac{2 \ln (\lambda K t(t+1))}{\min _{k} N_{k}(t)}}\right. \text { for all } \mathrm{t}\right\} .
$$

Show that $\mathbb{E}\left[\ln (\Lambda)^{2}\right]<\infty$.
(b) Prove that $\mathbb{E}\left[\tau_{\nu}(\varepsilon)\right]<\infty$ for all $\varepsilon>0$.
2) Prove that $\mathbb{E}\left[\tau_{\alpha}(\varepsilon)\right]<\infty$ for all $\varepsilon>0$.
3) Prove that $\mathbb{E}\left[\tau_{T}(\varepsilon)\right]<\infty$ for all $\varepsilon>0$.
4)
(a) Define for any $\varepsilon>0$

$$
\begin{gathered}
\tau_{\beta}(\varepsilon, \delta)=1+\max \left\{t \mid t \Phi\left(\nu, \alpha^{*}(\nu)\right)<\beta_{t}(\delta)+\varepsilon t\right\} \\
\text { and } \quad u(\varepsilon)=\sup _{\nu^{\prime}, \alpha}\left\{\Phi\left(\nu, \alpha^{*}(\nu)-\Phi\left(\nu^{\prime}, \alpha\right)\right) \mid d\left(\nu^{\prime}, \nu\right) \leq \varepsilon,\left\|\alpha-\alpha^{*}(\nu)\right\|_{\infty} \leq \varepsilon\right\} .
\end{gathered}
$$

Show that $\mathbb{E}[\tau] \leq \mathbb{E}\left[\tau_{\nu}(\varepsilon)\right]+\mathbb{E}\left[\tau_{T}(\varepsilon)\right]+\mathbb{E}\left[\tau_{\beta}(u(\varepsilon), \delta)\right]$.
(b) Conclude that $\lim _{\delta \rightarrow 0^{+}} \frac{\mathbb{E}[\tau]}{\ln (1 / \delta)} \leq c^{*}(\nu)$.

