Exercise session $n^{\circ} 5$: MOSS algorithm and continuous bandits

Exercise 1 :

We consider the setting of stochastic with a continuum of arms indexed by $\mathcal{A}=[0,1]$, with a mean-payoff function f that is α-Hölder with $\alpha \in(0,1]$, i.e., there is $L>0$ such that

$$
\forall x, x^{\prime} \in[0,1], \quad\left|f(x)-f\left(x^{\prime}\right)\right| \leq L\left|x-x^{\prime}\right|^{\alpha}
$$

We now consider the following algorithm that discretizes the action space into K bins:

- discretize $[0,1]$ into K bins, with $B_{i}=\left[\frac{i-1}{K}, \frac{i}{K}\right]$ for any $i=1, \ldots, K$,
- run MOSS algorithm over K arms, where picking the arm $I_{t} \in[K]$ corresponds to picking an action a_{t} (chosen arbitrarily) in the bin $B_{I_{t}}$.

1) Show that the regret of this "discretized" algorithm satisfies:

$$
R_{T} \leq K+45 \sqrt{K T}+\frac{T L}{K^{\alpha}}
$$

2) Assume that T, α are known in advance. Show that for a good choice of K, the regret is of order $T^{\frac{\alpha+1}{2 \alpha+1}}$.

Exercise 2 :

Consider an alternative version of MOSS algorithm, where $U_{k}(t)$ is replaced by the following value:

$$
U_{k}(t)=\hat{\mu}_{k}(t)+\sqrt{\frac{1}{N_{k}(t)} \ln \left(\frac{t}{N_{k}(t)}\right)}
$$

1) Show that there is a universal constant $c>0$, such that for any $\varepsilon>0$ and any $t \in \mathbb{N}$,

$$
\left.\left.\begin{array}{rl}
& \mathbb{P}\left(\mu_{k}-\hat{\mu}_{k}(t)\right.
\end{array}\right) \sqrt{\frac{1}{N_{k}(t)} \ln \left(\frac{t}{N_{k}(t)}\right)}+\varepsilon\right) \leq \frac{c}{t \varepsilon^{2}} .
$$

Hint: Use a peeling argument as in the proof of MOSS.
2) Deduce that the regret of this algorithm can be bounded as

$$
R_{T} \leq c^{\prime}\left(\sum_{k, \Delta_{k}>0} \frac{\ln (T)}{\Delta_{k}}+\Delta_{k}\right),
$$

where c^{\prime} is a universal constant.
Bonus: show that we can even have the tighter bound (for another constant c^{\prime})

$$
\mathbb{E}\left[N_{k}(T)\right] \leq c^{\prime}\left(\frac{\ln _{+}\left(T \Delta_{k}^{2}\right)}{\Delta_{k}^{2}}+1\right)
$$

3) Admit for this question that for any $\alpha \in[0,1]$,

$$
\max _{u>0} \min \left(\alpha u, \frac{\ln _{+}\left(u^{2}\right)}{u}\right) \leq \max (e \alpha, \sqrt{\alpha \ln (1 / \alpha)}) .
$$

(a) Using the previous bonus question, show that there is a universal constant c^{\prime} such that for any $k \in[K]$,

$$
\Delta_{k} \mathbb{E}\left[N_{k}(T)\right] \leq c^{\prime} \max \left(\frac{\mathbb{E}\left[N_{k}(T)\right]}{\sqrt{T}}, \sqrt{\mathbb{E}\left[N_{k}(T)\right] \ln \left(\frac{T}{\mathbb{E}\left[N_{k}(T)\right]}\right)}\right)+c^{\prime}
$$

(b) Show that the modified MOSS satisfies the following distribution free bound

$$
R_{T} \leq c^{\prime}(\sqrt{K T \ln (K)}+K)
$$

where c^{\prime} is a universal constant.

