Exercise session ${ }^{\circ} 4$: Kullback-Leibler divergence and lower bounds

Exercise 1 :

In this exercise, we are going to compare the $\frac{1}{K_{\inf }\left(\nu_{k}, \mathcal{D}, \mu^{\star}\right)}$ lower bound, with the $\frac{8}{\Delta_{k}^{2}}$ upper bound of UCB on $\mathbb{E}\left[N_{k}(T)\right]$.

1) For $p, q \in[0,1]$, we denote $\mathrm{kl}(p, q)=\mathrm{KL}(\operatorname{Ber}(p)$, $\operatorname{Ber}(q))$. Show that for any $p, q \in[0,1]$,

$$
\operatorname{kl}(p, q) \geq 2(p-q)^{2}
$$

2) Let (Ω, \mathcal{F}) be a measurable space and \mathbb{P}, \mathbb{Q} be two probability distributions over (Ω, \mathcal{F}). Show that

$$
\sup _{\substack{Z, Z \text { is } \mathcal{F} \text { measurable } \\ \text { taking values in }[0,1]}}\left|\mathbb{E}_{\mathbb{P}}[Z]-\mathbb{E}_{\mathbb{Q}}[Z]\right| \leq \sqrt{\frac{1}{2} \mathrm{KL}(\mathbb{P}, \mathbb{Q})} .
$$

3) Pinsker's inequality: Show that under the same conditions as 2), we have

$$
\|\mathbb{P}-\mathbb{Q}\|_{\mathrm{TV}}:=\sup _{A \in \mathcal{F}}|\mathbb{P}(A)-\mathbb{Q}(A)| \leq \sqrt{\frac{1}{2} \mathrm{KL}(\mathbb{P}, \mathbb{Q})} .
$$

Using refined versions of UCB (and its analysis), we can even get the following asympotic upper bound for any $\mathcal{D} \subset\{\nu \mid \nu$ is σ sub-Gaussian $\}$ and $\nu \in \mathcal{D}$:

$$
\limsup _{T \rightarrow \infty} \frac{\mathbb{E}\left[N_{k}(T)\right]}{\ln (T)} \leq \frac{2 \sigma^{2}}{\Delta_{k}^{2}}
$$

4) Assume in this question that $\mathcal{D} \subset \mathcal{P}([0,1])$
(a) What does the above upper bound becomes when $\mathcal{D} \subset \mathcal{P}([0,1])$?
(b) Exhibit a lower bound on $K_{\text {inf }}\left(\nu_{k}, \mathcal{D}, \mu^{\star}\right)$ in that case and compare with the above upper bound.
(c) Can you give an example where the known lower bound and the above upper bound differ?
5) Show that if $\mathcal{D}=\{\mathcal{N}(\mu, 1) \mid \mu \in \mathbb{R}\}$, then $K_{\text {inf }}\left(\nu_{k}, \mathcal{D}, \mu^{\star}\right)=\frac{2}{\Delta_{k}^{2}}$ and comment.

Exercise 2:

This exercise aims at giving a lower bound on the number of pulls of a suboptimal arm for small time horizons. We use the same notations as in the previous exercise.
1)
(a) Establish the following local version of Pinsker's inequality:

$$
\text { for any } 0 \leq p<q \leq 1, \quad \operatorname{kl}(p, q) \geq \frac{1}{2 \max _{x \in[p, q]} x(1-x)}(p-q)^{2} .
$$

Why is it stronger than Pinsker's inequality?
(b) Deduce that it yields

$$
\text { for any } 0 \leq p<q \leq 1, \quad \operatorname{kl}(p, q) \geq \frac{1}{2 q}(p-q)^{2} .
$$

2) A strategy is said non-naive if for all bandit instances and k such that $\mu_{k}=\mu^{\star}, \mathbb{E}\left[N_{k}(T)\right] \geq \frac{T}{K}$. Show that for all non-naive strategies and for any instance ν :

$$
\begin{gathered}
\forall T \leq \frac{1}{8 \mathrm{KL}^{\star}}, \forall k \in[K], \quad \mathbb{E}\left[N_{k}(T)\right] \geq \frac{T}{2 K} \\
\text { where } \quad \mathrm{KL}^{\star}:=\max _{k, \Delta_{k}>0} K_{\inf }\left(\nu_{k}, \mathcal{D}, \mu^{\star}\right) .
\end{gathered}
$$

Hint: Consider the same alternative bandits instance ν^{\prime} as we did in the course, when proving the asymptotic lower bound.

Exercise 3 :

This exercise aims at showing a minimax lower bound of the regret of the form $R_{T} \geq c \sqrt{K T}$. We restrict ourselves to the bandit model $\mathcal{D}=\{\mathcal{N}(\mu, 1) \mid \mu \in \mathbb{R}\}$, but similar arguments can be used for more general models (e.g. Bernoulli bandits). Fix in the following $K \geq 2$ and $T \geq \frac{K-1}{2}$. The minimax regret is defined as

$$
R_{T}^{\star}=\inf _{\text {strategy }} \sup _{\text {instance } \nu} R_{T}(\pi, \nu) .
$$

Let $\varepsilon>0$. We consider in the following $K+1$ bandit instances $\left(\nu^{j}\right)_{j \in[K+1]}$, where

$$
\begin{gathered}
\nu_{k}^{j}=\mathcal{N}(0,1) \quad \text { for any } k \in[K] \text { such that } j \neq k \\
\nu_{k}^{k}=\mathcal{N}(\varepsilon, 1) \quad \text { for any } k \in[K] .
\end{gathered}
$$

1) Justify that

$$
R_{T}^{\star} \geq \inf _{\pi} \sup _{\varepsilon \in(0,1)} \max _{i \in[K]} \varepsilon\left(T-\mathbb{E}_{\mu^{i}}^{\pi}\left[N_{i}(T)\right]\right),
$$

and that for any strategy π, there exists k_{0} such that $\mathbb{E}_{\nu^{0}}\left[N_{k_{0}}(T)\right] \leq \frac{T}{K}$.
2) Use the fundamental inequality and Pinsker's inequality to show that

$$
\mathbb{E}_{\nu^{0}}\left[N_{k_{0}}(T)\right] \frac{\varepsilon^{2}}{2} \geq 2\left(\mathbb{E}_{\nu^{0}}\left[\frac{N_{k_{0}}(T)}{T}\right]-\mathbb{E}_{\nu^{k_{0}}}\left[\frac{N_{k_{0}}(T)}{T}\right]\right)^{2}
$$

3) Combine the above results to derive

$$
R_{T}^{\star} \geq \sup _{\varepsilon \in(0,1)} \varepsilon T\left(1-\frac{1}{K}-\varepsilon \sqrt{\frac{T}{2 K}}\right)
$$

and conclude that $R_{T}^{\star} \geq \frac{1}{8 \sqrt{2}} \sqrt{K T}$.

