Exercises Sequential Learning 2023

Exercise session n°4 : Kullback-Leibler
divergence and lower bounds

Exercise 1 :
In this exercise, we are going to compare the

of UCB on E[N,(T)].

1

Kt on D) lower bound, with the A% upper bound

1) For p,q € [0,1], we denote kl(p, q) = KL(Ber(p), Ber(q)). Show that for any p,q € [0, 1],
Kl(p,q) > 2(p — q)*.

2) Let (2, F) be a measurable space and P,Q be two probability distributions over (2, F).
Show that
1
sup [Ep[Z] — Eq[Z]| < 4/ SKL(P, Q).

Z, Z is F measurable
taking values in [0,1]

3) Pinsker’s inequality: Show that under the same conditions as 2), we have
1
[P~ Qllry = sup [P(4) — Q(4)| < 1/ 3KL(E,Q)
AeF

Using refined versions of UCB (and its analysis), we can even get the following asympotic upper
bound for any D C {v | v is ¢ sub-Gaussian} and v € D:

: E[N(T)] _ 20°
lmsup = "o T) — A2

4) Assume in this question that D C P([0,1])
(a) What does the above upper bound becomes when D C P([0, 1])?

(b) Exhibit a lower bound on K, (vk, D, p*) in that case and compare with the above upper
bound.

(¢) Can you give an example where the known lower bound and the above upper bound differ?
5) Show that if D = {N(u,1) | p € R}, then Kin(vg, D, u*) = Ali and comment.
Exercise 2 :

This exercise aims at giving a lower bound on the number of pulls of a suboptimal arm for small
time horizons. We use the same notations as in the previous exercise.

1)
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(a) Establish the following local version of Pinsker’s inequality:

1
f 0<p<qg<l1, Kkl > —q)>.
orany 0<p<g<1, Kkl(pgq) > D maxscyy (1 — ) (p—q)

Why is it stronger than Pinsker’s inequality?
(b) Deduce that it yields

1
forany 0<p<q<1, Kp.g) 25 (p—a)°

2) A strategy is said non-naive if for all bandit instances and k such that py, = p*, E[N(T)] >
Show that for all non-naive strategies and for any instance v:

T
Z

1 T
T < —— K E[N(T)] > —
where KL* = k{gg};{) Kine(vg, D, ).

Hint: Consider the same alternative bandits instance v/ as we did in the course, when proving
the asymptotic lower bound.

Exercise 3 :
This exercise aims at showing a minimax lower bound of the regret of the form Ry > ¢V KT.
We restrict ourselves to the bandit model D = {N(p, 1) | © € R}, but similar arguments can be
used for more general models (e.g. Bernoulli bandits). Fix in the following K > 2 and T' > %
The minimax regret is defined as

R; = inf sup Rp(m, v).

strategy 7 instance v
Let € > 0. We consider in the following K + 1 bandit instances (1) je[k+1], Where
vl = N'(0,1) for any k € [K] such that j # &
v = N(g, 1) for any k € [K].

1) Justify that
R} > inf sup maxe(T — E5L[N:i(T))),

T 2g(0,1) €[K]
and that for any strategy =, there exists ko such that E,o[Ny,(T")] <
2) Use the fundamental inequality and Pinsker’s inequality to show

t
IE,,o[NkO(T)]% > 2 (IE,,O[N’“%ET)] _ E”’“O[N#T)O |

3) Combine the above results to derive

1 T
Ry > sup eT |1 ——= —ey\/—
r e€(0,1) < K 2K>

* 1
and conclude that Ry > =2V KT.
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