Exercises Sequential Learning 2023

Exercise session n°3 : stochastic bandits
(part 2)

Exercise 1 :
Concentration for sequences of random length. Let X, X,,... be a sequence of indepen-
dent standard Gaussian random variables defined on probability space (2, F,P). Suppose that
T:Q — {1,2,3,...} is another variable and let iy = 23:1 % be the empirical mean based on
T samples.

1) Show that if T"is independent from X, for all ¢, then for any ¢ € (0, 1)

P(ﬂTz W)ga.

2) Now relax the assumption that 7" is independent from (X;);. Let E, = 17—, and F; =
o(Xi,...,X;) be the o-algebra generated by the first ¢ samples. Let ¢ € (0,1) and show there
exists a random variable 1" such that for all ¢, Iy is F;-measurable and

. 2In(1/6)\
o)

Hint: You can use the law of the iterated logarithm, which says if X, X5, ... is a sequence of
independent and identically distributed random variables with zero mean and unit variance, then

n
. ¢
lim sup =l

n—oo V2nlnlnn

=1 almost surely.

3) What is the relation between the above inequality and our concentration lemma for the
empirical means in bandits problems? Do 2) and our lemma contradict? Why?

Exercise 2 :
Phased SE. Consider the following phased Successive Eliminations algorithm parameterized by
a>1.

1) Show a regret bound similar to Successive Eliminations algorithm.
2) What is the role played by a?

Exercise 3 :
Adapting to reward variance. Let Xi,..., Xy be a sequence of i.i.d. random variables
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Algorithm: Phased Successive Eliminations
input: T, a > 1

K+ [K]

(0

while Card(K) > 1 do
pull all arms in K [a’] times

for all k € IC such that fu, + \/ 35 < maxiex fli — / 75y do K+ K\ {k}
(—1+1
repeat pull only arm in C until ¢t =T

with mean pu, variance o2 and bounded support so that X; € [0, M] almost surely. Define the
estimators

1 N
N = Z Xy
t=1

o 1
N

o

(e — X)*.

M= =

t=1

We admit in the following the empirical Bernstein inequality:
. 252 3M

1) Show that the Bernstein inequality in the course implies here

202
i

2M
P |y — p| > 2 — In(2 <
<quv pl 2 ) 7 n(2/0) + o In /5)) <9
Comment on the differences between the two above Bernstein inequalities.
2) Show that 6% = L SN (X, — 1)? — (jiw — p)*.
3) Is 62 an unbiased estimator of o2? If not, can we easily make it unbiased?
4) Show that

2M?202 2M?
< 0.
- In(1/8) + S ln(1/5)> <6

P (&2 >o0” +
Hint: Use Bernstein inequality of 1).

5) (Hard) Consider a bandit setting with K arms, bounded rewards Xj(¢) € [0, M] and the
variance of the k-th arm is o2. Design a policy that depends on M, but does not need to know
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o0; a priori, such that there exists a universal constant C' > 0 with
o2
Rp<C Y <Ak+(M+A’i)lnT> .

k,Ap>0

Hint: Without a complete proof, the empirical Bernstein inequality can be extended (up to
some changes) to cases where N is a random variable.

Exercise 4 :
This exercise studies the celebrated Thompson sampling algorithm, described below.

In words, Thompson sampling starts with a prior distribution py distribution on the (mean)
parameters of the bandits instance and at each round ¢, it draws random samples 6 (t) from the
posterior distribution p;_; on the instance parameters at time ¢t — 1, which is defined as

ps(A) = P (s i) € 4| Fivs ) for any 4 € B(R) 1)

where Fy_1 = o| Uy, X4, (1), Uz, X0, (2), ... X, (E — 1)) and the U, are random variables uni-

formly drawn in [0, 1], that are independent with all other variables.

Algorithm: Thompson sampling

input: prior distribution pg

fort=1,...,7T do
Sample (1) ~ p;_1
Pull a; € argmaxyc g () // Ties broken arbitrarily
Update p; as the posterior distribution of the parameters, following Bayes rule.

We note for each time ¢t € N and arm k € [K]:

1) Consider an instance of Bernoulli bandits, i.e., D = {Bernoulli(u) | x € [0,1]}". Show then
that in the case of Bernoulli rewards with a uniform prior, at each time ¢t € N, p;_; is the
joint distributlion of K independent Beta distributions, where the k-th Beta distribution has
parameters (S(t — 1) + 1, Ni(t — 1) — Si(t — 1) + 1). In other words for any ¢ € N, the drawn
samples 0 () are independent with each other conditioned on F;_; and

Gk(t) ~ Beta(Sk(t — 1) +1, Nk(t — 1) — Sk(t — 1) + 1)

2) Consider now that the prior is the improper uniform distribution on R and Gaussian bandits
with variance 02, i.e., D = {N (1, 02) | n € R} .
For any t € N, what is the distribution of p;_; in this case?

IThis can be seen as the uniform distribution on R. It is not a proper distribution, since it is not of measure 1, but
the Bayes rule can still be applied with it.
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