
Exercises Sequential Learning 2023

Exercise session n°3 : stochastic bandits
(part 2)

Exercise 1 :

Concentration for sequences of random length. Let X1, X2, . . . be a sequence of indepen-

dent standard Gaussian random variables defined on probability space (⌦,F ,P). Suppose that

T : ⌦ ! {1, 2, 3, . . .} is another variable and let µ̂T =
PT

t=1
Xt
T be the empirical mean based on

T samples.

1) Show that if T is independent from Xt for all t, then for any � 2 (0, 1)

P
 
µ̂T �

r
2 ln(1/�)

T

!
 �.

2) Now relax the assumption that T is independent from (Xt)t. Let Et = 1T=t and Ft =
�(X1, . . . , Xt) be the �-algebra generated by the first t samples. Let � 2 (0, 1) and show there

exists a random variable T such that for all t, Et is Ft-measurable and

P
 
µ̂T �

r
2 ln(1/�)

T

!
= 1.

Hint: You can use the law of the iterated logarithm, which says if X1, X2, . . . is a sequence of

independent and identically distributed random variables with zero mean and unit variance, then

lim sup
n!1

Pn
t=1 Xtp

2n ln lnn
= 1 almost surely.

3) What is the relation between the above inequality and our concentration lemma for the

empirical means in bandits problems? Do 2) and our lemma contradict? Why?

Exercise 2 :

Phased SE. Consider the following phased Successive Eliminations algorithm parameterized by

a > 1.

1) Show a regret bound similar to Successive Eliminations algorithm.

2) What is the role played by a?

Exercise 3 :

Adapting to reward variance. Let X1, . . . , XN be a sequence of i.i.d. random variables
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Algorithm: Phased Successive Eliminations

input: T , a � 1

K [K]
` 0
while Card(K) > 1 do

pull all arms in K da`e times

for all k 2 K such that µ̂k +
q

2 lnT
Nk(T )  maxi2K µ̂i �

q
2 lnT
Ni(T ) do K K \ {k}

` `+ 1
repeat pull only arm in K until t = T

with mean µ, variance �2
and bounded support so that Xt 2 [0,M ] almost surely. Define the

estimators

µ̂N =
1

N

NX

t=1

Xt

�̂2 =
1

N

NX

t=1

(µ̂�Xt)
2.

We admit in the following the empirical Bernstein inequality:

P
 
|µ̂N � µ| �

r
2�̂2

N
ln(3/�) +

3M

N
ln(3/�)

!
 �.

1) Show that the Bernstein inequality in the course implies here

P
 
|µ̂N � µ| �

r
2�2

N
ln(2/�) +

2M

3N
ln(2/�)

!
 �

Comment on the differences between the two above Bernstein inequalities.

2) Show that �̂2 = 1
N

PN
t=1(Xt � µ)2 � (µ̂N � µ)2.

3) Is �̂2
an unbiased estimator of �2

? If not, can we easily make it unbiased?

4) Show that

P
 
�̂2 � �2 +

r
2M2�2

N
ln(1/�) +

2M2

3N
ln(1/�)

!
 �.

Hint: Use Bernstein inequality of 1).

5) (Hard) Consider a bandit setting with K arms, bounded rewards Xk(t) 2 [0,M ] and the

variance of the k-th arm is �2
k. Design a policy that depends on M , but does not need to know
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�i a priori, such that there exists a universal constant C > 0 with

RT  C
X

k,�k>0

✓
�k + (M +

�2
i

�i
) lnT

◆
.

Hint: Without a complete proof, the empirical Bernstein inequality can be extended (up to

some changes) to cases where N is a random variable.

Exercise 4 :

This exercise studies the celebrated Thompson sampling algorithm, described below.

In words, Thompson sampling starts with a prior distribution ppp0 distribution on the (mean)

parameters of the bandits instance and at each round t, it draws random samples ✓k(t) from the

posterior distribution pppt�1 on the instance parameters at time t� 1, which is defined as

pppt�1(A) = P
✓
(µ1, . . . , µK) 2 A | Ft�1

◆
for any A 2 B(R), (1)

where Ft�1 = �

✓
U1, Xa1(1), U2, Xa2(2), . . . Xat�1(t � 1)

◆
and the Us are random variables uni-

formly drawn in [0, 1], that are independent with all other variables.

Algorithm: Thompson sampling

input: prior distribution ppp0
for t = 1, . . . , T do

Sample ✓(t) ⇠ pppt�1

Pull at 2 argmaxk2[K] ✓k(t) // Ties broken arbitrarily
Update pppt as the posterior distribution of the parameters, following Bayes rule.

We note for each time t 2 N and arm k 2 [K]:

Sk(t) =
tX

s=1

Xk(s)1as=k.

1) Consider an instance of Bernoulli bandits, i.e., D = {Bernoulli(µ) | µ 2 [0, 1]}K . Show then

that in the case of Bernoulli rewards with a uniform prior, at each time t 2 N, pppt�1 is the

joint distribut1ion of K independent Beta distributions, where the k-th Beta distribution has

parameters (Sk(t � 1) + 1, Nk(t � 1) � Sk(t � 1) + 1). In other words for any t 2 N, the drawn

samples ✓k(t) are independent with each other conditioned on Ft�1 and

✓k(t) ⇠ Beta(Sk(t� 1) + 1, Nk(t� 1)� Sk(t� 1) + 1).

2) Consider now that the prior is the improper uniform distribution
1

on R and Gaussian bandits

with variance �2
, i.e., D = {N (µ, �2) | µ 2 R}K .

For any t 2 N, what is the distribution of pppt�1 in this case?

1This can be seen as the uniform distribution on R. It is not a proper distribution, since it is not of measure 1, but
the Bayes rule can still be applied with it.
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