Exercise session $\mathrm{n}^{\circ} 3$: stochastic bandits (part 2)

Exercise 1 :

Concentration for sequences of random length. Let X_{1}, X_{2}, \ldots be a sequence of independent standard Gaussian random variables defined on probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $T: \Omega \rightarrow\{1,2,3, \ldots\}$ is another variable and let $\hat{\mu}_{T}=\sum_{t=1}^{T} \frac{X_{t}}{T}$ be the empirical mean based on T samples.

1) Show that if T is independent from X_{t} for all t, then for any $\delta \in(0,1)$

$$
\mathbb{P}\left(\hat{\mu}_{T} \geq \sqrt{\frac{2 \ln (1 / \delta)}{T}}\right) \leq \delta
$$

2) Now relax the assumption that T is independent from $\left(X_{t}\right)_{t}$. Let $E_{t}=\mathbb{1}_{T=t}$ and $\mathcal{F}_{t}=$ $\sigma\left(X_{1}, \ldots, X_{t}\right)$ be the σ-algebra generated by the first t samples. Let $\delta \in(0,1)$ and show there exists a random variable T such that for all t, E_{t} is \mathcal{F}_{t}-measurable and

$$
\mathbb{P}\left(\hat{\mu}_{T} \geq \sqrt{\frac{2 \ln (1 / \delta)}{T}}\right)=1
$$

Hint: You can use the law of the iterated logarithm, which says if X_{1}, X_{2}, \ldots is a sequence of independent and identically distributed random variables with zero mean and unit variance, then

$$
\limsup _{n \rightarrow \infty} \frac{\sum_{t=1}^{n} X_{t}}{\sqrt{2 n \ln \ln n}}=1 \quad \text { almost surely }
$$

3) What is the relation between the above inequality and our concentration lemma for the empirical means in bandits problems? Do 2) and our lemma contradict? Why?

Exercise 2:

Phased SE. Consider the following phased Successive Eliminations algorithm parameterized by $a>1$.

1) Show a regret bound similar to Successive Eliminations algorithm.
2) What is the role played by a ?

Exercise 3 :

Adapting to reward variance. Let X_{1}, \ldots, X_{N} be a sequence of i.i.d. random variables

```
Algorithm: Phased Successive Eliminations
input: \(T, a \geq 1\)
\(\mathcal{K} \leftarrow[K]\)
\(\ell \leftarrow 0\)
while \(\operatorname{Card}(\mathcal{K})>1\) do
    pull all arms in \(\mathcal{K}\left\lceil a^{\ell}\right\rceil\) times
    for all \(k \in \mathcal{K}\) such that \(\hat{\mu}_{k}+\sqrt{\frac{2 \ln T}{N_{k}(T)}} \leq \max _{i \in \mathcal{K}} \hat{\mu}_{i}-\sqrt{\frac{2 \ln T}{N_{i}(T)}}\) do \(\mathcal{K} \leftarrow \mathcal{K} \backslash\{k\}\)
    \(\ell \leftarrow \ell+1\)
repeat pull only arm in \(\mathcal{K}\) until \(t=T\)
```

with mean μ, variance σ^{2} and bounded support so that $X_{t} \in[0, M]$ almost surely. Define the estimators

$$
\begin{gathered}
\hat{\mu}_{N}=\frac{1}{N} \sum_{t=1}^{N} X_{t} \\
\hat{\sigma}^{2}=\frac{1}{N} \sum_{t=1}^{N}\left(\hat{\mu}-X_{t}\right)^{2} .
\end{gathered}
$$

We admit in the following the empirical Bernstein inequality:

$$
\mathbb{P}\left(\left|\hat{\mu}_{N}-\mu\right| \geq \sqrt{\frac{2 \hat{\sigma}^{2}}{N} \ln (3 / \delta)}+\frac{3 M}{N} \ln (3 / \delta)\right) \leq \delta
$$

1) Show that the Bernstein inequality in the course implies here

$$
\mathbb{P}\left(\left|\hat{\mu}_{N}-\mu\right| \geq \sqrt{\frac{2 \sigma^{2}}{N} \ln (2 / \delta)}+\frac{2 M}{3 N} \ln (2 / \delta)\right) \leq \delta
$$

Comment on the differences between the two above Bernstein inequalities.
2) Show that $\hat{\sigma}^{2}=\frac{1}{N} \sum_{t=1}^{N}\left(X_{t}-\mu\right)^{2}-\left(\hat{\mu}_{N}-\mu\right)^{2}$.
3) Is $\hat{\sigma}^{2}$ an unbiased estimator of σ^{2} ? If not, can we easily make it unbiased?
4) Show that

$$
\mathbb{P}\left(\hat{\sigma}^{2} \geq \sigma^{2}+\sqrt{\frac{2 M^{2} \sigma^{2}}{N} \ln (1 / \delta)}+\frac{2 M^{2}}{3 N} \ln (1 / \delta)\right) \leq \delta .
$$

Hint: Use Bernstein inequality of 1).
5) (Hard) Consider a bandit setting with K arms, bounded rewards $X_{k}(t) \in[0, M]$ and the variance of the k-th arm is σ_{k}^{2}. Design a policy that depends on M, but does not need to know
σ_{i} a priori, such that there exists a universal constant $C>0$ with

$$
R_{T} \leq C \sum_{k, \Delta_{k}>0}\left(\Delta_{k}+\left(M+\frac{\sigma_{i}^{2}}{\Delta_{i}}\right) \ln T\right)
$$

Hint: Without a complete proof, the empirical Bernstein inequality can be extended (up to some changes) to cases where N is a random variable.

Exercise 4:

This exercise studies the celebrated Thompson sampling algorithm, described below.
In words, Thompson sampling starts with a prior distribution \boldsymbol{p}_{0} distribution on the (mean) parameters of the bandits instance and at each round t, it draws random samples $\theta_{k}(t)$ from the posterior distribution \boldsymbol{p}_{t-1} on the instance parameters at time $t-1$, which is defined as

$$
\begin{equation*}
\boldsymbol{p}_{t-1}(A)=\mathbb{P}\left(\left(\mu_{1}, \ldots, \mu_{K}\right) \in A \mid \mathcal{F}_{t-1}\right) \quad \text { for any } A \in B(\mathbb{R}) \tag{1}
\end{equation*}
$$

where $\mathcal{F}_{t-1}=\sigma\left(U_{1}, X_{a_{1}}(1), U_{2}, X_{a_{2}}(2), \ldots X_{a_{t-1}}(t-1)\right)$ and the U_{s} are random variables uniformly drawn in $[0,1]$, that are independent with all other variables.

```
Algorithm: Thompson sampling
input: prior distribution \(\boldsymbol{p}_{0}\)
for \(t=1, \ldots, T\) do
    Sample \(\boldsymbol{\theta}(t) \sim \boldsymbol{p}_{t-1}\)
    Pull \(a_{t} \in \operatorname{argmax}_{k \in[K]} \theta_{k}(t) \quad / /\) Ties broken arbitrarily
    Update \(\boldsymbol{p}_{t}\) as the posterior distribution of the parameters, following Bayes rule.
```

We note for each time $t \in \mathbb{N}$ and $\operatorname{arm} k \in[K]$:

$$
S_{k}(t)=\sum_{s=1}^{t} X_{k}(s) \mathbb{1}_{a_{s}=k}
$$

1) Consider an instance of Bernoulli bandits, i.e., $\mathcal{D}=\{\operatorname{Bernoulli}(\mu) \mid \mu \in[0,1]\}^{K}$. Show then that in the case of Bernoulli rewards with a uniform prior, at each time $t \in \mathbb{N}, \boldsymbol{p}_{t-1}$ is the joint distribut1ion of K independent Beta distributions, where the k-th Beta distribution has parameters $\left(S_{k}(t-1)+1, N_{k}(t-1)-S_{k}(t-1)+1\right)$. In other words for any $t \in \mathbb{N}$, the drawn samples $\theta_{k}(t)$ are independent with each other conditioned on \mathcal{F}_{t-1} and

$$
\theta_{k}(t) \sim \operatorname{Beta}\left(S_{k}(t-1)+1, N_{k}(t-1)-S_{k}(t-1)+1\right)
$$

2) Consider now that the prior is the improper uniform distribution ${ }^{1}$ on \mathbb{R} and Gaussian bandits with variance σ^{2}, i.e., $\mathcal{D}=\left\{\mathcal{N}\left(\mu, \sigma^{2}\right) \mid \mu \in \mathbb{R}\right\}^{K}$.
For any $t \in \mathbb{N}$, what is the distribution of \boldsymbol{p}_{t-1} in this case?
[^0]
[^0]: ${ }^{1}$ This can be seen as the uniform distribution on \mathbb{R}. It is not a proper distribution, since it is not of measure 1 , but the Bayes rule can still be applied with it.

