
Exercises Sequential Learning 2023

Exercise session n°2 : stochastic bandits
Exercise 1 :

Sub-Gaussian random variables. Let X be a centered random variable in R. Show that

affirmations below satisfy the following implications chain: 1. =) 2. =) 3. =) 4. =) 5.

1. Laplace transform: for any ⌘ 2 R, ln(E[e⌘X ])  �2⌘2

2 ;

2. Concentration: for any " > 0, max {P(X � "),P(X  �")}  exp(�"2

2�2 );

3. Moment condition: for any q 2 N⇤
, E[X2q]  q!(4�2)q;

4. Orlicz condition: E[exp( X
8�2 )]  2;

5. Laplace transform: for any ⌘ 2 R, ln(E[e⌘X ])  24�2⌘2

2 .

Exercise 2 :

Doubling trick. This exercise analyses a meta-algorithm based on the doubling trick that

converts a policy depending on the horizon to a policy with similar guarantees that does not.

Let B be an arbitrary set of bandits. Suppose you are given a policy (algorithm) ⇡ = ⇡(T )
designed for B that accepts the horizon T as a parameter and has a regret guarantee of

max
1tT

Rt(⇡(n), ⌫)  fT (⌫), 8⌫ 2 B.

For a fixed sequence of integers T1 < T2 > T3 < . . ., we define the algorithm ⇡̃ that first runs

⇡(T1) on J1, T1K; then runs independently ⇡(T2) on JT1, T1 + T2K; etc. So ⇡̃ runs ⇡(Ti) on

J
Pi�1

j=1 Tj,
Pi

j=1 TjK and does not require a prior knowledge of T .

1) For a fixed T 2 N, let `max = min{` 2 N⇤ |
P`

i=1 Ti � T}. Prove that for any ⌫ 2 B, the

regret of ⇡̃ on ⌫ is at most

RT (⇡̃, ⌫) 
`maxX

`=1

fT`
(⌫).

2) (Distribution free bound) Suppose that fT (⌫) 
p
T . Show that for a good choice of n`, for

any ⌫ 2 B and T 2 N:

RT (⇡̃, ⌫) 
1p
2� 1

p
T .

3) (Instance dependent bound) Suppose that fT (⌫)  g(⌫) ln(T ) for some function g. Show that

with the same choice of sequence n` as in b), we can bound the regret for any ⌫ 2 B and T 2 N
as:

RT (⇡̃, ⌫)  g(⌫)
ln(T )2

2 ln(2)
.

4) Can you suggest a sequence of n` such that for some universal constant C > 0, the regret of

⇡̃ can be bounded for any ⌫ 2 B and T 2 N as:

RT (⇡̃, ⌫)  Cg(⌫) ln(T ).
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Exercise 3 :

Consider the "-greedy algorithm with "t = min

✓
1, (K ln(t))

1
3

t
1
3

◆
for any t 2 N. Show that for a

large enough universal constant C > 0, the regret of "-greedy satisfies

RT  CT
2
3 (K ln(T ))

1
3 .

Hint: Bound the instantaneous regret E[�at ].

Exercise 4 :

Distribution free bound. Let B be an arbitrary set of bandits. Suppose you are given a policy

(algorithm) ⇡ = ⇡(T ) designed for B that has the following guarantees

E[Nk(T )]  C0 + C
ln(T )

�2
k

, 8⌫ 2 B, 8T 2 N,

for some constants C0, C.

(a) First, show that it directly implies the following distribution free bound:

RT  KC0 +K
p

CT ln(T ).

(b) Show, with a refined analysis, that we even have the following bound

RT 
p

KT (C0 + C ln(T )).
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