Exercise session n°2 : stochastic bandits

Exercise 1 :

Sub-Gaussian random variables. Let X be a **centered** random variable in \mathbb{R} . Show that affirmations below satisfy the following implications chain: $1. \implies 2. \implies 3. \implies 4. \implies 5.$

- 1. Laplace transform: for any $\eta \in \mathbb{R}$, $\ln(\mathbb{E}[e^{\eta X}]) \leq \frac{\sigma^2 \eta^2}{2}$;
- 2. Concentration: for any $\varepsilon > 0$, max $\{\mathbb{P}(X \ge \varepsilon), \mathbb{P}(X \le -\varepsilon)\} \le \exp(\frac{-\varepsilon^2}{2\sigma^2});$
- 3. Moment condition: for any $q \in \mathbb{N}^*$, $\mathbb{E}[X^{2q}] \leq q! (4\sigma^2)^q$;
- 4. Orlicz condition: $\mathbb{E}[\exp(\frac{X}{8\sigma^2})] \leq 2;$
- 5. Laplace transform: for any $\eta \in \mathbb{R}$, $\ln(\mathbb{E}[e^{\eta X}]) \leq \frac{24\sigma^2 \eta^2}{2}$.

Exercise 2 :

Doubling trick. This exercise analyses a meta-algorithm based on the doubling trick that converts a policy depending on the horizon to a policy with similar guarantees that does not. Let \mathcal{B} be an arbitrary set of bandits. Suppose you are given a policy (algorithm) $\pi = \pi(T)$ designed for \mathcal{B} that accepts the horizon T as a parameter and has a regret guarantee of

$$\max_{1 \le t \le T} R_t(\pi(n), \nu) \le f_T(\nu), \quad \forall \nu \in \mathcal{B}.$$

For a fixed sequence of integers $T_1 < T_2 > T_3 < \ldots$, we define the algorithm $\tilde{\pi}$ that first runs $\pi(T_1)$ on $[\![1, T_1]\!]$; then runs **independently** $\pi(T_2)$ on $[\![T_1, T_1 + T_2]\!]$; etc. So $\tilde{\pi}$ runs $\pi(T_i)$ on $[\![\sum_{j=1}^{i-1} T_j, \sum_{j=1}^{i} T_j]\!]$ and does not require a prior knowledge of T.

1) For a fixed $T \in \mathbb{N}$, let $\ell_{\max} = \min\{\ell \in \mathbb{N}^* \mid \sum_{i=1}^{\ell} T_i \geq T\}$. Prove that for any $\nu \in \mathcal{B}$, the regret of $\tilde{\pi}$ on ν is at most

$$R_T(\tilde{\pi},\nu) \le \sum_{\ell=1}^{\ell_{\max}} f_{T_\ell}(\nu).$$

2) (Distribution free bound) Suppose that $f_T(\nu) \leq \sqrt{T}$. Show that for a good choice of n_ℓ , for any $\nu \in \mathcal{B}$ and $T \in \mathbb{N}$:

$$R_T(\tilde{\pi},\nu) \le \frac{1}{\sqrt{2}-1}\sqrt{T}.$$

3) (Instance dependent bound) Suppose that $f_T(\nu) \leq g(\nu) \ln(T)$ for some function g. Show that with the same choice of sequence n_ℓ as in b), we can bound the regret for any $\nu \in \mathcal{B}$ and $T \in \mathbb{N}$ as:

$$R_T(\tilde{\pi},\nu) \le g(\nu) \frac{\ln(T)^2}{2\ln(2)}.$$

4) Can you suggest a sequence of n_{ℓ} such that for some universal constant C > 0, the regret of $\tilde{\pi}$ can be bounded for any $\nu \in \mathcal{B}$ and $T \in \mathbb{N}$ as:

$$R_T(\tilde{\pi}, \nu) \le Cg(\nu)\ln(T).$$

Exercise 3 :

Consider the ε -greedy algorithm with $\varepsilon_t = \min\left(1, \frac{(K\ln(t))^{\frac{1}{3}}}{t^{\frac{1}{3}}}\right)$ for any $t \in \mathbb{N}$. Show that for a large enough universal constant C > 0, the regret of ε -greedy satisfies

$$R_T \le CT^{\frac{2}{3}} (K \ln(T))^{\frac{1}{3}}.$$

Hint: Bound the instantaneous regret $\mathbb{E}[\Delta_{a_t}]$.

Exercise 4 :

Distribution free bound. Let \mathcal{B} be an arbitrary set of bandits. Suppose you are given a policy (algorithm) $\pi = \pi(T)$ designed for \mathcal{B} that has the following guarantees

$$\mathbb{E}[N_k(T)] \le C_0 + C \frac{\ln(T)}{\Delta_k^2}, \quad \forall \nu \in \mathcal{B}, \forall T \in \mathbb{N},$$

for some constants C_0, C .

(a) First, show that it directly implies the following distribution free bound:

$$R_T \le KC_0 + K\sqrt{CT\ln(T)}.$$

(b) Show, with a refined analysis, that we even have the following bound

$$R_T \le \sqrt{KT(C_0 + C\ln(T))}.$$