Fxercises Sequential Learning

Exercise sheet n°2

Exercise 1 :
In this exercise, we are going to compare the

of UCB on E[Ny(T)].

1 . 8
Rt ox D7) lower bound, with the A7 upper bound

1) For p,q € [0, 1], we denote kl(p, q) = KL(Ber(p), Ber(q)). Show that for any p,q € [0, 1],
Kl(p,q) > 2(p — q)*.

2) Let (Q,F) be a measurable space and P,Q be two probability distributions over (2, F).

Show that
1
sup [Bs7] — EgZ]| < 1/ 5KL(P, Q).
Z, Z is F measurable

taking values in [0,1]

3) Pinsker’s inequality: Show that under the same conditions as 2), we have
1
P = Qlfrv = sup [P(A) = Q(A)] < 1/ SKL(E; Q).
AeF

Using refined versions of UCB (and its analysis), we can even get the following asympotic upper
bound for any D C {v | v is o sub-Gaussian} and v € D:

4) Assume in this question that D c P([0, 1])
(a) What does the above upper bound becomes when D C P([0,1])?

(b)-Exhibit a lower bound on Kj.(v, D, u*) in that case and compare with the above upper
bound.

(c) Can you give an example where the known lower bound and the above upper bound differ?

5) Show that if D ={N(p,1) | p € R}, then Kine(vy, D, %) = 25 and comment.
k

Solution: 1) Fix ¢ € (0,1) and define f(p) = kl(p, ¢). Computing the derivatives

F=m (2 =2)
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So a second order Taylor expansion yields:

fp) = fl@)+ (p—a)f'(q) +2(p—q)°
=2(p — q)°.

2) This is a consequence of the data processing inequality with expectations:
KL(P,Q) > KI(Es[2], Eq[Z]).

This quantity is larger tha 2(Ep[Z] — Eg[Z])?, thanks to the last question. And we can take

the sup over all such Z.

n 3) This is taking Z = 1 4.

4) a) Replace o? by 1.

b) Kint(v, D, u*) > 2A%. So the lower bound is smaller than the upper bound (logic!).

c¢) Taking D containing only Bernoulli variables does the trick.

5) Let p (resp. ¢) be the probability density of a Gaussian of mean uy (resp. po) and
2

. . H2—H] _ . .
variance 1. Since % =e "z tm=m)r 49 simple computation leads to the answer.

KL(p, q) = / 1n(§)p($)dw

R
2 2
(3 —
= [ s o)
2 2
13— p
A 22 L (s — p2)E(p)
2 2
p3 = pu
:%ﬂL(ﬂl—m)Ml
(M2—M1)2
2

Exercise 2 :
This exercise aims at giving a lower bound on the number of pulls of a suboptimal arm for small

time horizons. We use the same notations as in the previous exercise.
1)

(a) Establish the following local version of Pinsker’s inequality:

1
forany 0 <p<qg<1, Kkl(p,q)>
2maxyepq x(l — o

)(p—Q) :

Why is it stronger than Pinsker’s inequality?

(b) Deduce that it yields

1

forany 0 <p<qg<1, Kkl(p,q)> 2—(p —q)2.
q
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2) A strategy is said non-naive if for all bandit instances and & such that p, = p*, E[Ng(T)] >
Show that for all non-naive strategies and for any instance v:

T
.

1 T
VT < ——.Vk € [K], E[N,(T)] > —
_ 8KL*’ e [ ]7 [ k( )] — K’
where  KL* := max Kju(v, D, u*).

k,Ar>0

Hint: Consider the same alternative bandits instance v/ as we did in the course, when proving
the asymptotic lower bound.

Solution: 1)a) We extract from the question 1) in Exercise 1:

Ir € [p,q] s.t. Kl(p,q) = m(p —q)%.

It is a tighter as soon as 5 & [p,¢]|. b) This a direct consequence.
2) We can again assume, without loss of generality, that KL* < +oo. Then for any
suboptimal k£ (otherwise it is automatic from definition of non-naive-algorithm), we can

consider v/ as
vi=vjifj #k
v, € DstE(vy) > p*.

Again, we have

N (T N.(T
B, [Nu(DKL{w ) > g, (M) g, (M)
The strategy is non-naive, so IEV/[N#T)] > 4. If EV[NkT(T)} > L then the lower bound is true.

Otherwise, the local version of Pinsker’s inequality yields (+using monotonicity)

p Ni(T), 1
B, [V (TVKL (v, 1)) > (e, (M) L)

T , K N, (T) 1.,
EKL(V/ka) > > E(E”[ kT ] — E) :

Going to the infimum of such v, yields 2% Kin¢(vy, D, p*) > (E,[2D) — +=)?. We can then

conclude when 7' is is in the considered range.

Exercise 3 :
Consider an alternative version of MOSS algorithm, where Uy(t) is replaced by the following

value:
Ui(t) = u(t) + \/ v ()
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1) Show that there is a universal constant ¢ > 0, such that for any ¢ > 0 and any ¢ € N,

P (Mk — f(t) = \/Nkl(t) Ing (N,j(t)) +€> < tg%

N 1 t c
and P (uk(t) — g > \/Nk(t) In, (Nk(t)) —|—6> < ol

Hint: Use a peeling argument as in the proof of MOSS.

2) Deduce that the regret of this algorithm can be bounded as

Rr</c ( Z lnA(T) +Ak> ;

kARS0 R

where ¢ is a universal constant.
Bonus: show that we can even have the tighter bound (for another constant ¢’)

In, (TAF) + 1) ‘

E[N(T)] < ¢ ( 2

3) Admit for this question that for any o € [0, 1],

— (au, W) < mmax (e y/aTni/a)).

u>0

(a) Using the previous bonus question, show that there is a universal constant ¢ such that for
any k € [K],

(b) Show that the modified MOSS satisfies the following distribution free bound

Ry < (VKT In(K) + K),

where ¢ is a universal constant.

Solution: 1) We have for any n € N, following the same arguments as in the proof of
MOSS:

1 t 2271
P — () > 4 ——1 - d 2n > N.(t) > < e met T
(“’“ Mk(>_\/Nk(t) n+<Nk(t))+€an "= k()‘n)‘e t
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As a consequence, we can do the peeling:

P (“k — fu(t) > \/N:(t) In (N: ) ) ZIP’ (,Uk: — [ (t \/N,j( - In. (N:(t)> 4 e and 2%+

1
2 2e+1 exp (—2+162)
=0
Note that f : xz +— 22 exp(—27T1e?) is increasing and then decreasing on R,. As a conse-
quence, we have the comparison >,° f(I) < max, f(z) + [;° f(z)de. So
Z 2€+1 exp ( 2€+1 2) < max 2x+1 eXp(_2w+1€2) + / 2:C+1 eXp(_Qaf:-‘rng)dx
—0 $€R+ 0
< s | exp(—u)d
max uexp —us’ + —— exp(—ue
- uE[Q 00) b 1n(2) 9 P
<=

2) We define the clean event for the suboptimal arm k at time ¢ as

MJr&andﬂk*(t)Z“k_ %_%}

= (0 <
Ery {Mk(t) < pg T+ Nt) 3

We have P(—=&;) < tlASS Moreover, wecan show that
36
gk,t and Ay = k — Nk( ) < pln(t/Nk(t)),
which can be rewritten for some constant ¢; as

36
Eprand ap =k = Ni(t) < A_i (ln+(tA2) + cl) .

We can then conclude using classical arguments.

For the bonus part, the trick is to bound the probability of the clean events, starting from

= (A2—|
3) a)
ro anr(TA%) /
k
2
< ¢ supmin (AT, w) +c
A>0 A
2 2
< ¢ sup min <uE[Nk(T>], VTln, (u )> + ¢ = VT supmin (aku, In, (u )> +d,
u>0 ﬁ U u>0 u
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where ay, = w € [0,1]. We can then use the admitted result to get
ALE[NL(T)] < ¢"VT max (ak, Qg ln(l/ak)> +c.
b) We have
Ry = AE[N(T)]
k
< c’ﬁz (ak + v ag ln(l/ak)> + K
k
Sc’ﬁz apIn(1/ag) + (K +VT) Z@kzl
k

k
< VKT Z Qg \/— Z % In(oy) + (K +VT) Cauchy-Schwarz
\ k

1
<dVKT, —In <? Zak) +d (K + \/T) —1In is concave
k
< VKTVInK +¢(K + VT).

Exercise 4 :
Consider th K-armed stochastic contextual setting (setting 1 in lecture 7) and assume that

C = [0, 1] and the reward function is (L, a)-Holder for o € (0, 1]:
Vk € [K|,Ye,d € C,|r(k,c) —r(k,d)| < Llc— .

Build an algorithm with a regret bound (to prove) of order

Rr=0 <L2a1+1 K2a&+l T20;1;11> .

Solution: The idea is to discretize C into M bins of size 1/M and run MOSS independently
for each context bin.

The regret then scales as

7L, X TL
e +;\/KTZ- < +VMKT.

Taking M = (LQ%)ﬁ leads to the result.
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Exercise 5 :

Consider in this exercise a bandit instance v € DX such that

o D={N(u1)|peR}
e 1 has a unique optimal arm

We define for any 1/ € DX

K
a* (V') = argmax _ inf ZakKL(l/,;,ﬁ,’g).
a€Pr V' €D, 1
1) Show that

v = argmax ®(v, )
a€EPk

. Olpx 2
®(v, ) = = min —— AL

(v, @) 2 k2k* Qe + ap N
2) Justify that ®(v, «) is a concave function of «

3) Show that a*(v) is unique

where

4) Show that a* is continuous at v

Solution: 1) We are considering the optim problem

inf § "l — 12
(e} #eMalt

is then reached for s,

By continuity, we can extend inf ey, () to its closure. For a fixed o, the minimum over p
—
the infimum can be recast as

. ,
1 except for k.= k* and some suboptimal arm. lL.e., for a fixed «
inf Q@ S
' EMare (1 Z k(Mk Iuk

= f apa?A 1—2)*A}
Igr;lkgxé%uakx 2+ ap(l—2)

A2 a
min 1—";1 by noting that the minimal x is x k.
Rk 4 L ay, + Qe
Qp* ag
2) It is the minimum of concave functions

3) The max over « is reached when all the

apx oy

are equal, i.e. when for any k, k' # k*
2 2
Ak’ . Ak‘/
1, 1 1, 1
Oék* g Oék*

Qs
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Using the fact that ), oy, = 1, fixing the value of oy~ then fixes the value of all cy,. From
there for any k # k*, noting ®(v) = maxaep, (v, a):

 205.9(v)

- Alaj. —29(v)

*

O

Therefore,

20.®
ak*+ZA2ak*— D )—1.
kA k>
The solutions to this equation (in aj.) are the roots of a polynomial, and are thus either
finite or the polynomial is constant. The polynomial is obviously not constant here, so that
there are a finite number of maximisers of max,ep, (v, ). The objective function is yet
concave and thus either has a unique maximizer or an infinite number of maximizers.. Hence,
there is a unique maximizer o*(v).

4) argmax, E(vy) is constant in a neighborhood of v. Hence by the previous part, ® is
continuous at (v, «). Suppose that * is not continuous at v. Then there exists a sequence
(v,,) converging to v such that o*(v,) 4 a*(v). By compactness, we can then extract a limit
(o Of subsequence of a*(v,) such that a. # a*(v). But then, we would have

d(a*(v),v) = liTan O(a*(v),v,) < lién O(a*(vy,), ) = Pso, V)-

By unicity of the maximizer, this then implies o, = a*(v), so that o* is continuous at v.
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