
So
lut

ion
Exercises Sequential Learning

Exercise sheet n°2
Exercise 1 :

In this exercise, we are going to compare the 1
Kinf(ωk,D,µω) lower bound, with the 8

!2
k

upper bound
of UCB on E[Nk(T )].

1) For p, q → [0, 1], we denote kl(p, q) = KL(Ber(p),Ber(q)). Show that for any p, q → [0, 1],

kl(p, q) ↑ 2(p↓ q)2.

2) Let (!,F) be a measurable space and P,Q be two probability distributions over (!,F).
Show that

sup
Z, Z is F measurable
taking values in [0,1]

|EP[Z]↓ EQ[Z]| ↔

√
1

2
KL(P,Q).

3) Pinsker’s inequality: Show that under the same conditions as 2), we have

↗P↓Q↗TV := sup
A→F

|P(A)↓Q(A)| ↔

√
1

2
KL(P,Q).

Using refined versions of UCB (and its analysis), we can even get the following asympotic upper
bound for any D ↘ {ω | ω is ε sub-Gaussian} and ω → D:

lim sup
T↑↓

E[Nk(T )]

ln(T )
↔

2ε2

”2
k

.

4) Assume in this question that D ↘ P([0, 1])

(a) What does the above upper bound becomes when D ↘ P([0, 1])?
(b) Exhibit a lower bound on Kinf(ωk,D, µε) in that case and compare with the above upper

bound.
(c) Can you give an example where the known lower bound and the above upper bound di!er?

5) Show that if D = {N (µ, 1) | µ → R}, then Kinf(ωk,D, µε) = 2
!2

k
and comment.

Solution: 1) Fix q → (0, 1) and define f(p) = kl(p, q). Computing the derivatives

f ↔(p) = ln

(
p(1↓ q)

q(1↓ p)

)

f ↔↔(p) =
1

p(1↓ p)
↑ 4.
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So a second order Taylor expansion yields:

f(p) ↑ f(q) + (p↓ q)f ↔(q) + 2(p↓ q)2

= 2(p↓ q)2.

2) This is a consequence of the data processing inequality with expectations:

KL(P,Q) ↑ kl(EP[Z],EQ[Z]).

This quantity is larger tha 2(EP[Z]↓ EQ[Z])2, thanks to the last question. And we can take
the sup over all such Z.
n 3) This is taking Z = 1A.
4) a) Replace ε2 by 1

4 .
b) Kinf(ωk,D, µε) ↑ 2”2

k. So the lower bound is smaller than the upper bound (logic!).
c) Taking D containing only Bernoulli variables does the trick.
5) Let p (resp. q) be the probability density of a Gaussian of mean µ1 (resp. µ2) and

variance 1. Since p(x)
q(x) = e

µ22→µ2
1

2 +(µ1↗µ2)x, as simple computation leads to the answer.

KL(p, q) =

∫

R
ln(

p

q
)p(x)dx

=

∫
(
µ2
2 ↓ µ2

1

2
+ (µ1 ↓ µ2)x)p(x)dx

=
µ2
2 ↓ µ2

1

2
+ (µ1 ↓ µ2)E(p)

=
µ2
2 ↓ µ2

1

2
+ (µ1 ↓ µ2)µ1

=
(µ2 ↓ µ1)2

2
.

Exercise 2 :

This exercise aims at giving a lower bound on the number of pulls of a suboptimal arm for small
time horizons. We use the same notations as in the previous exercise.
1)

(a) Establish the following local version of Pinsker’s inequality:

for any 0 ↔ p < q ↔ 1, kl(p, q) ↑
1

2maxx→[p,q] x(1↓ x)
(p↓ q)2.

Why is it stronger than Pinsker’s inequality?
(b) Deduce that it yields

for any 0 ↔ p < q ↔ 1, kl(p, q) ↑
1

2q
(p↓ q)2.
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2) A strategy is said non-naive if for all bandit instances and k such that µk = µε, E[Nk(T )] ↑
T
K .

Show that for all non-naive strategies and for any instance ω:

≃T ↔
1

8KLε , ≃k → [K], E[Nk(T )] ↑
T

2K
,

where KLε := max
k,!k>0

Kinf(ωk,D, µε).

Hint: Consider the same alternative bandits instance ω ↔ as we did in the course, when proving
the asymptotic lower bound.

Solution: 1)a) We extract from the question 1) in Exercise 1:

⇐r → [p, q] s.t. kl(p, q) =
1

2r(1↓ r)
(p↓ q)2.

It is a tighter as soon as 1
2 ⇒→ [p, q]]. b) This a direct consequence.

2) We can again assume, without loss of generality, that KLε < +⇑. Then for any
suboptimal k (otherwise it is automatic from definition of non-naive algorithm), we can
consider ω ↔ as {

ω ↔
j = ωjifj ⇒= k

ω ↔
k → Ds.t.E(ω ↔

k) > µε.

Again, we have

Eω [Nk(T )]KL(ωk, ω
↔
k) ↑ kl(Eω [

Nk(T )

T
],Eω↑ [

Nk(T )

T
]).

The strategy is non-naive, so Eω↑ [
Nk(T )

T ] ↑ 1
K . If Eω [

Nk(T )
T ] ↑ 1

K , then the lower bound is true.
Otherwise, the local version of Pinsker’s inequality yields (+using monotonicity)

Eω [Nk(T )]KL(ωk, ω
↔
k) ↑ kl(Eω [

Nk(T )

T
],

1

K
)

T

K
KL(ωk, ω

↔
k) ↑ ↑

K

2
(Eω [

Nk(T )

T
]↓

1

K
)2.

Going to the infimum of such ω ↔
k yields 2T

K2Kinf(ωk,D, µε) ↑ (Eω [
Nk(T )

T ] ↓ 1
K )2. We can then

conclude when T is is in the considered range.

Exercise 3 :

Consider an alternative version of MOSS algorithm, where Uk(t) is replaced by the following
value:

Uk(t) = µ̂k(t) +

√
1

Nk(t)
ln+

(
t

Nk(t)

)
.
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1) Show that there is a universal constant c > 0, such that for any ϑ > 0 and any t → N,

P
(
µk ↓ µ̂k(t) ↑

√
1

Nk(t)
ln+

(
t

Nk(t)

)
+ ϑ

)
↔

c

tϑ2

and P
(
µ̂k(t)↓ µk ↑

√
1

Nk(t)
ln+

(
t

Nk(t)

)
+ ϑ

)
↔

c

tϑ2
.

Hint: Use a peeling argument as in the proof of MOSS.
2) Deduce that the regret of this algorithm can be bounded as

RT ↔ c↔
(

∑

k,!k>0

ln(T )

”k
+”k

)
,

where c↔ is a universal constant.
Bonus: show that we can even have the tighter bound (for another constant c↔)

E[Nk(T )] ↔ c↔
(
ln+(T”2

k)

”2
k

+ 1

)
.

3) Admit for this question that for any ϖ → [0, 1],

max
u>0

min

(
ϖu,

ln+(u2)

u

)
↔ max

(
eϖ,

√
ϖ ln(1/ϖ)

)
.

(a) Using the previous bonus question, show that there is a universal constant c↔ such that for
any k → [K],

”kE[Nk(T )] ↔ c↔ max(
E[Nk(T )]

⇓
T

,

√

E[Nk(T )] ln

(
T

E[Nk(T )]

)
) + c↔.

(b) Show that the modified MOSS satisfies the following distribution free bound

RT ↔ c↔(
√

KT ln(K) +K),

where c↔ is a universal constant.

Solution: 1) We have for any n → N, following the same arguments as in the proof of
MOSS:

P
(
µk ↓ µ̂k(t) ↑

√
1

Nk(t)
ln+

(
t

Nk(t)

)
+ ϑ and 2n ↑ Nk(t) ↑ n

)
↔ e↗2nϑ2 2n

t
.
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As a consequence, we can do the peeling:

P
(
µk ↓ µ̂k(t) ↑

√
1

Nk(t)
ln+

(
t

Nk(t)

)
+ ϑ

)
=

↓∑

ϖ=0

P
(
µk ↓ µ̂k(t) ↑

√
1

Nk(t)
ln+

(
t

Nk(t)

)
+ ϑ and 2ϖ+1

↑ Nk(t) ↑ 2ϖ
)

1

t

↓∑

ϖ=0

2ϖ+1 exp
(
↓2ϖ+1ϑ2

)
.

Note that f : x ⇔↖ 2x+1 exp(↓2x+1ϑ2) is increasing and then decreasing on R+. As a conse-
quence, we have the comparison

∑↓
ϖ=0 f(l) ↔ maxx f(x) +

↓
0 f(x)dx. So

↓∑

ϖ=0

2ϖ+1 exp
(
↓2ϖ+1ϑ2

)
↔ max

x→R+

2x+1 exp(↓2x+1ϑ2) +

∫ ↓

0

2x+1 exp(↓2x+1ϑ2)dx

↔ max
u→[2,↓)

u exp↓uϑ2 +
1

ln(2)

∫ ↓

2

exp(↓uϑ2)du

↔
c

ϑ2
.

2) We define the clean event for the suboptimal arm k at time t as

Ek,t =

{
µ̂k(t) ↔ µk +

√
ln(t/Nk(t))

Nk(t)
+

”k

3
and µ̂k↓(t) ↑ µk ↓

√
ln(t/Nk(t))

Nk(t)
↓

”k

3


.

We have P(¬Ek,t) ↔ 18c
t!2

k
. Moreover, we can show that

Ek,t and at+1 = k =↙ Nk(t) ↔
36

”2
k

ln(t/Nk(t)),

which can be rewritten for some constant c1 as

Ek,t and at+1 = k =↙ Nk(t) ↔
36

”2
k

(
ln+(t”

2
k) + c1

)
.

We can then conclude using classical arguments.

For the bonus part, the trick is to bound the probability of the clean events, starting from
t = ∝

1
!2

k
′.

3) a)

”kE[Nk(T )] ↔ c↔ min

(
”kE[Nk(T )],

ln+(T”2
k)

”k

)
+ c↔”k

↔ c↔ sup
!>0

min

(
”T,

ln(T”2)

”

)
+ c↔

↔ c↔ sup
u>0

min

(
u
E[Nk(T )]

⇓
T

,

⇓
T ln+(u2)

u

)
+ c↔ = c↔

⇓

T sup
u>0

min

(
ϖku,

ln+(u2)

u

)
+ c↔,
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where ϖk =
E[Nk(T )]

T → [0, 1]. We can then use the admitted result to get

”kE[Nk(T )] ↔ c↔↔
⇓

T max
(
ϖk,

√
ϖk ln(1/ϖk)

)
+ c↔.

b) We have

RT =
∑

k

”kE[Nk(T )]

↔ c↔
⇓

T
∑

k

(
ϖk +

√
ϖk ln(1/ϖk)

)
+ c↔K

↔ c↔
⇓

T
∑

k

√
ϖk ln(1/ϖk) + c↔(K +

⇓

T )
∑

k

ϖk = 1

↔ c↔
⇓

KT

√∑

k

ϖk

√
↓

∑

k

1

K
ln(ϖk) + c↔(K +

⇓

T ) Cauchy-Schwarz

↔ c↔
⇓

KT

↓ ln

(
1

K

∑

k

ϖk

)
+ c↔(K +

⇓

T ) ↓ ln is concave

↔ c↔
⇓

KT
⇓

lnK + c↔(K +
⇓

T ).

Exercise 4 :

Consider th K-armed stochastic contextual setting (setting 1 in lecture 7) and assume that
C = [0, 1] and the reward function is (L,ϖ)-Hölder for ϖ → (0, 1]:

≃k → [K], ≃c, c↔ → C, |r(k, c)↓ r(k, c↔)| ↔ L|c↓ c↔|ϱ.

Build an algorithm with a regret bound (to prove) of order

RT = O

(
L

1
2ε+1K

ε
2ε+1T

ε+1
2ε+1

)
.

Solution: The idea is to discretize C into M bins of size 1/M and run MOSS independently
for each context bin.
The regret then scales as

TL

Mϱ
+

M∑

i=1

√
KTi ↔

TL

Mϱ
+
⇓

MKT.

Taking M =
(
L2 T

K

) 1
2ε+1 leads to the result.
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Exercise 5 :

Consider in this exercise a bandit instance ω → D
K such that

• D = {N (µ, 1) | µ → R};
• ω has a unique optimal arm.

We define for any ω ↔
→ D

K :

ϖ↘(ω ↔) = argmax
ϱ→PK

inf
ω̃↑→Dalt(ϑ↑)

K∑

k=1

ϖkKL(ω ↔
k, ω̃

↔
k).

1) Show that

ϖ↘ω = argmax
ϱ→PK

#(ω,ϖ)

where #(ω,ϖ) =
1

2
min
k ≃=k↓

ϖk↓ϖk

ϖk↓ + ϖk
”2

k.

2) Justify that #(ω,ϖ) is a concave function of ϖ.

3) Show that ϖ↘(ω) is unique.

4) Show that ϖ↘ is continuous at ω.

Solution: 1) We are considering the optim problem

sup
ϱ

inf
µ↑→Malt(µ)

∑

k

ϖk(µk ↓ µ↔
k)

2.

By continuity, we can extend infµ↑→Malt(µ) to its closure. For a fixed ϖ, the minimum over µ↔

is then reached for µ↔
k = µk except for k = k↘ and some suboptimal arm. I.e., for a fixed ϖ,

the infimum can be recast as

inf
µ↑→Malt(µ)

∑

k

ϖk(µk ↓ µ↔
k)

2 = min
k ≃=k↓

inf
x→[0,1]

ϖk↓x
2”2

k + ϖk(1↓ x)2”2
k

min
k ≃=k↓

”2
k

1
ϱk↓

+ 1
ϱk

by noting that the minimal x is xk =
ϖk

ϖk + ϖk↓
.

2) It is the minimum of concave functions.

3) The max over ϖ is reached when all the !2
k

1
εk↓

+ 1
εk

are equal, i.e. when for any k, k↔
⇒= k↘

”2
k

1
ϱk↓

+ 1
ϱk

=
”2

k↑

1
ϱk↓

+ 1
ϱk↑

.
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Using the fact that
∑

k ϖk = 1, fixing the value of ϖk↓ then fixes the value of all ϖk. From
there for any k ⇒= k↘, noting #(ω) = maxϱ→PK #(ω,ϖ):

ϖ↘
k =

2ϖ↘
k↓#(ω)

”2
kϖ

↘
k↓ ↓ 2#(ω)

.

Therefore,

ϖ↘
k↓ +

∑

k ≃=k↓

2ϖ↘
k↓#(ω)

”2
kϖ

↘
k↓ ↓ 2#(ω)

= 1.

The solutions to this equation (in ϖ↘
k↓) are the roots of a polynomial, and are thus either

finite or the polynomial is constant. The polynomial is obviously not constant here, so that
there are a finite number of maximisers of maxϱ→PK #(ω,ϖ). The objective function is yet
concave and thus either has a unique maximizer or an infinite number of maximizers. Hence,
there is a unique maximizer ϖ↘(ω).

4) argmaxk E(ωk) is constant in a neighborhood of ω. Hence by the previous part, # is
continuous at (ω,ϖ). Suppose that ϖ↘ is not continuous at ω. Then there exists a sequence
(ωn) converging to ω such that ϖ↘(ωn) ⇒↖ ϖ↘(ω). By compactness, we can then extract a limit
ϖ↓ of subsequence of ϖ↘(ωn) such that ϖ↓ ⇒= ϖ↘(ω). But then, we would have

#(ϖ↘(ω), ω) = lim
n

#(ϖ↘(ω), ωn) ↔ lim
n

#(ϖ↘(ωtn), ωtn) = #(ϖ↓, ω).

By unicity of the maximizer, this then implies ϖ↓ = ϖ↘(ω), so that ϖ↘ is continuous at ω.
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