Fxercises Sequential Learning

Exercise sheet n°1

In this session, we consider online learning with experts (see Lecture #1) with linear losses. The
losses ¢;; are in [0, 1] when not precised otherwise.

Exercise 1 :
Consider online learning with experts (see Lecture #1) with linear losses. Show that no strategy

satisfies for all sequence ({y, ..., fxn¢)e € ([0, 1]V)N:
liy — Uy =
33t 3y =)

Solution: Consider ¢;; generated as 1.i.d. random variables with distribution Bernoulli(1/2),
then for any algorithm E[3.]_, Z] L pitlis] = £. Moreover as soon as N > 2,

[thl mingen fpe] < %. In consequence, for any algorithm, there exists a sequence such
that
T N T T
Z ijtﬁjt min (; > —
: kE[N] 4
t=1 j=1 t=1

Exercise 2 :
Consider online learning with experts (see Lecture #1) with linear losses. Assume in this exercise
that ¢;; € [m, M], with m, M € R unknown. How can we tune 7,?
We consider in the following EWA with adaptive rates (1;);:

t—1
e Zs=1 s

S e e

Pt =

1) Show that if (7;) are non-increasing

_nt
1 & 1 <ZN—1 exp( =111 Ztsﬂ Ejs)) .
I NISCE |

| N Zk 1exp( Z Eks)

nt
Hint: Use the fact that z — x ™+ is convex.

2) Show that if (7;) are non-increasing, then the regret of EWA satisfies:

T

Rr < M Z(St,
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N N
1
where §; = E piliy+ —In E :pAte—mzjt ’
Jj=1 " Nt j=1 ’
Hint: Multiply by 77% the logarithm of the expression obtained in 1) to make a telescopic sum
appears.

Recall the Bernstein’s inequality for a random variable X € [m, M]:

e"™M=m) 1 (M —m)

X
Vn >0, mnE[e"] < nE[X] + (M —m)? Var (X).
We now consider EWA with 7, = Eltn_—]lvé, with the convention that % = 400.
s=1"%8
3) Let v, = Z;-V:l(@'t - 2521 Prelie)*Pje-
M —
(a) Show that v; > it m) (M —m)d;.

emM=m) —p (M —m) —1
(b) Deduce that v, > 2= — 2(M —m)d;.

4)
T 2 T 9 T
a) Show that ) < uInN+(M-=m)(1+-=-InN Os.

(b) Finally, show that Ry < (M — m)vVTInN + (M —m)(2+ 4In N).

n
Solution: 1) n; > n;41 so that z — 27T is convex. Jensen inequality then writes for any
(;);
N N
N o
Zﬁxj Z Nn:il (ij)"tJrl.
j=1 7j=1
Nt41
Taking z; = p;," e="+14t yields the result.
2) Taking logarithm of previous expression yields:
1 al 11 1 d
— In pae Mt | > (—— —)InN+—1In exp(— lis
Nt (; ! > (77t 77t+1) Tt+1 (; (Z S_Zl )
1 t—1
o ln(z exp(—ny Z Uis)).
7 s=1
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Summing over t yields, by telescoping,

Z In <Zp e Wﬁ) >N _ bW, Zexp —r 41 Z@s — —In(N)

i 't Mo Nr+1 7]T+1
T
In N
> - — mianjs

This directly yields:

T
Zét > _ln_N + Zijtﬁjt mmejs
t=1

-

Rr

which allows to conclude.

3) (a) v; is the variance of the r.v. given by X = —/,; with probability p;;, and InE[e"X] —
mE[X] = n:0;. This inequality is then a direct application of Bernstein inequality.

(b) For f:z+— ——~—~ — 2 the previous inequality gives:
20,
v = o Jn(M —m))(M —m)5,.
t

A functional study then allows to'say that f(x) > —% for > 0 (f is increasing on R and

f(0) = -32).

4)(a) We have by telescoping

= & S +23 4,

<(M—m) by direct bound

T 5
Z (M —m)é; +2—1In N
=1 1t

T T
<(M-m)> 6+ vInN+ gln(N)(M —m)dy,
t= t=1

where the last inequality comes from applying 3)(b).
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(b) For x = Zle d;, we just showed a second order inequality of the form: 2% < a + bz with
a=3" oInN and b= (M —m)(1 + 2In N). This then yields

<

Va2 +4b
%Sﬁﬁ,j

ie.,
T T 5
Zétg thlnN—i—(M—m)(l—i-glnN).

t=1 t=1

Moreover, as 7; is non-increasing: = :;F:l 0. So that plugging the above bound

in the inequality of question 2) yields

T
4
Ry <2 thlnN—{—(M—m)@—l—glnN).

t=1

We then conclude by noting that v; < (M = m)?.

Exercise 3 :
(Kln(t))3
1

Consider the e-greedy algorithm with ¢; = min <1, for any t € N. Show that for

large enough universal constant C' > 0, the regret of e-greedy satisfies
Rp < CT3 (K n(T))s.

Hint: Bound the instantaneous regret E[Ay,].

Q

t

Solution: With A; = (M) °* ande € R,

E[A,] =Y Pla, = k)A,
k
< 2cA; + ZIP’(at =k, Ay > 2cA;)
k

S 2CAt + & + Z]P(/lk(t - 1) — MUk 2 CAt) + ]P)([L* — [Lk’* Z CAt).
k

It just remains to bound P(fi;(t — 1) — pu, > cA\;) in O (2¢). Similarly to the proof of the
instance dependent bound, we have for any x;

67202 Afzt

P(jun(t = 1) = e 2 ¢A) S wP(NE(E = 1) S 20) + 5
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2
In(K3 /A t3 In( 5
Taking x; = 3 néczA/z H = <1 () )

, it just remains to bound
o P(NFt—1) < x)
Similarly to the instance dependent proof, we can use Bernstein inequality, where here

E[NX(t me( Klnf ))§> :

S

In particular, there exist constants ¢, ¢’ such that when % > 'K, then E[N}(t —1)] >

2 1

d “;‘# Moreover here, ¢ is bounded away from 0 (e.g. ¢ > 0.1), while we cantake
3

" as large as possible. So when ﬁ > 'K, we have for a large enough choice of ¢ that

x; < SE[N}(t — 1)]. Bernstein inequality then yields

E[NR( — 1
2 P(NE(E = 1) < a) < EINR(t — 1)) exp(= . k(5 I
2 1 _ t% ln(t)%
— t3 ln(t)S e 5 K% )

2 1
In particular, when tg;(;) : > 512() this term is in (9( ), so that we have the desired

instantaneous regret<bound when ( ) > "K for a large enough ¢’ (recall that ¢ is bounded

away from 0). We can then conclude by noting that if —= (T <K,
Ry <T <T35T5 < T5("K In(T))3.

If instead % > 'K, let 7 =inf{t | ﬁ > 'K}, It comes

T
Ry <71 — 1+ZE[A%]

t=r1

T

2 1

< 73 (KIn(r)} + 0 (Z At)
t=1

=0 (THKm(T)}).
Exercise 4 :
Concentration for sequences of random length. Let X, X5, ... be a sequence of indepen-

dent standard Gaussian random variables defined on probability space (€2, F,P). Suppose that
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T

T:Q—{1,2,3,...} is another variable and let i = >_,_,

T samples.

% be the empirical mean based on

1) Show that if 7" is independent from X, for all ¢, then for any 6 € (0, 1)

P(ﬂTz w%a

2) Now relax the assumption that 7' is independent from (X;);. Let E;, = 1y—, and F; =
o(Xi,...,X:) be the o-algebra generated by the first ¢ samples. Let 6 € (0,1) and show there
exists a random variable T" such that for all ¢, F; is F;-measurable and

. 2In(1/6)

Hint: You can use the law of the iterated logarithm, which says if X, X5, ... is a sequence of
independent and identically distributed random variables with zero mean and unit variance, then
n
X
lim sup L = 17 almost surely.

n—oo V2nlnlnn

3) What is the relation between the above inequality and our concentration lemma for the
empirical means in bandits problems? Do 2) and our lemma contradict? Why?

Solution: 1) This is a consequence of Hoeffding inequality, when conditioning on the values
of T

t
properly defined (7' < +oo almost surely) and satisfies the point 3).

2) Define T = {t € No|jiy > /229 Thanks to the law of iterated algorithm, it is

3) Although T corresponds to Ni(7') in our concentration lemma, it does not contradict
with it. The reason is that Ny (T") is almost surely bounded by 7', and the failure probability
is bounded by a term scaling with 7". Allowing Nx(7T') to go to possibly infinite values thus
makes the concentration irrelevant.

Exercise 5 :
Phased SE. Consider the following phased Successive Eliminations algorithm parameterized by
a>1.
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Algorithm: Phased Successive Eliminations

input: 7, a > 1

K «+ [K]

(<0

while Card(K) > 1 do
pull all arms in K [a*] times
for all k € K such that i, + ]%[hg) < max;ex fl; — % do K «+ K\ {k}
(141

repeat pull only arm in I until t =T

1) Show a regret bound similar to Successive Eliminations algorithm.

2) What is the role played by a?

Solution: 1) Similar proof technique, but E[Ny(T')] is now bounded by
Ly
2InT
min{n: Z[aﬁ |'m > 5 AI; and ¢ € N}
=0

By noting n, = Zf:o [a"], we have ny < ngy1 < (a+ 1)np+ 1.° This then implies with the
above bound on E[Ny(T)] that

E[Ni(T)] < 32(a+ 1)—
This allows to conclude.
2) a plays a trade-off between

e the incurred regret,

e the frequence at which we need to update the policy (and number of arm switches).

Exercise 6 :
Adapting to reward variance. Let Xi,..., Xy be a sequence of i.i.d. random variables
with mean pu, variance o? and bounded support so that X; € [0, M] almost surely. Define the
estimators

1 N
:NZXt

MXt

IIMZ
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We admit in the following the empirical Bernstein inequality:
. 262 3M
P <\MN — = n(3/0) + Wlﬂ(3/5)> <4
1) Show that the Bernstein inequality in the course implies here

202 2M
Ao > <
P <|NN pl 2 n(2/0) + o 1n(2/5)> <0

Comment on the differences between the two above Bernstein inequalities.

2) Show that 62 = + 327 (X, — ) — (jin — p)*.

3) Is 62 an unbiased estimator of 02?7 If not, can we easily make it unbiased?

2 ~+2 2
P (&2 > 0% 4 \/2]\va In(1/6) + 2;]4\[ ln(1/5)> <

Hint: Use Bernstein inequality of 1).

4) Show that

5) (Hard) Consider a bandit setting with K arms, bounded rewards X (t) € [0, M] and the
variance of the k-th arm is o7. Design a policy that depends‘on M, but does not need to know
0, a priori, such that there exists a universal constant C' > 0 with

2
Rp<C > (Ak+ M+A)lnT>
k,Ap>0

Hint: Without the stack-ef rewards model, the empirical Bernstein inequality can be extended
(up to some changes) to cases where /V is a random variable.

Solution: 1) In the course, the Bernstein inequality reads (after rescaling by %) as

Ne?

202 + %Me)

P (|fir — p| > €) < 2exp(—

Taking e =4/~ 2221n(2/6) + 2% 1n(2/4) allows to conclude. The main difference is the one we

admit holds for the estlmated variance, while the one we just proved only holds for the true
variance (which is generally unknown).
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Exercises

2) By definition

(in — X4)?

N
1 I
= DX 2y + iy
t=1
1 & 2
St (e
t=1
1 N
=N D (X = ) = (v — p)*.
t=1

3) Obviously, E[6?] < E[(X; — u)?], so it is biased. Actually we

E[6°] = E[(X; — 1)’] = E[(iiv — p)?]
= E[(X; — 1)’] — Var (iiy)
= E[(X; — p)°] — 7 Var (X;)
_ N x)

N_162 is an unbiased estimator.

4) This is a consequence of the Bernstein inequality 1) and the
M?o2.

202(t — 1)
€ (t — 1 . S
a; € argmax [ig( )+ D)

k

/

(.

N_

In(369) + ]S’,i‘é |

N
Z Xtﬂ)
t=1

have

variance of sum of independent variables is sum of variances

fact that Var ((X; — p)?) <

5) The algorithm to propose a the variant of UCB that pulls at each time step

In(3t?).

S

~~

=By (t—1)

We can show similarly to the course that for each time step t,

P (\m) ] > \/ 2;:(%) In(3/0) + ]j—f‘{w 1n<3/5>) <t
P [ 63(t) > of + \/2;\\5;:; In(1/43) + ;Vj\j(t) n(1/£%) | < tl?
) =Sk (t)
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So that here for § = t*, we have for the good event
Enp = {ﬂk(t) — e < By(t) and p" — fu (t) < By(t)
and 67(t) < o} + Sk(t)}

and P(&,) > 1— t% In particular if £, holds, we pull the arm £ at time ¢ 41 if 2By () > Ay
(similar to UCB proof). Now, we bound By (t) using 4) under the event &.

262(t) ., 3M
ﬁ(t)ln(iﬁ)%—m

. ¢2+_2S<>1 )+

n(3t3) +

Bi(t) = In(3t%)

M
ln (3t%)

k(1)

n(3t3) + n(3t3
10 Nk )

Note that

251(8) | . 2 2M20} s AM? | a3y
Vo ) < \ Nk(t)\/Nk(t) In(363) In(3t ”\/3%@)21 (312)

2M In(3t3) | 2072 » 2M
Ni(t) Ni(t)

ARG

o2 (14’\%)]\4 N T4y
(t

So that there exists a constant C' > 0 such that

2

In(36%) + C—0_1n(36%).

Bi(t) < C A

9%
oV Nk()
As a consequence, if &, holds, a;y1 = k implies that

2

M
20 |~k 1n(3¢3) + 2C

(D) N M) = A
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This is a polynomial inequality, which yields for a = 2CM, b = 2Co? and ¢ = Ay:

In(3¢3) _ b dac
> — 1+ — -1
Nell) ~ 2a (\/ TR >
b
E%min (Z—;,@) \/1+z—22min(z,§)
1
2

. [c Jc
=—min | —,4/— | .
b\ a
This directly implies for a large enough constant C’

, M o}
Ni(t) < C'In(3t*) max (A—k, A—%)

2
< C'In(3t%) (% + %) :
k k

From there, we can conclude similarly to the end of the proof in the course for UCB.

Exercise 7 :
This exercise studies the celebrated Thompson sampling algorithm, described below.

In words, Thompson sampling starts with a prior distribution py distribution on the (mean)
parameters of the bandits instance and at each round ¢, it draws random samples 6 (t) from the
posterior distribution p;_; on the instance parameters at time ¢ — 1, which is defined as

pos() =P (i) €A Ty ) for any A € BR) 1)

where F_; = O'(Ul,Xal(l), Ugy X0y (2),.0.. X, (t — 1)) and the U, are random variables uni-

formly drawn in [0, 1], that are independent with all other variables.

Algorithm: Thompson sampling

input: prior distribution py

fort=1,...,T do
Sample 6(t) ~p;_1
Pull a; € argmaxy. g () // Ties broken arbitrarily
Update p; as the posterior distribution of the parameters, following Bayes rule.

We note for each time ¢ € N and arm k € [K]:

Sk<t) = Z Xk(s)]laszk.
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1) Consider an instance of Bernoulli bandits, i.e., D = {Bernoulli(u) | p € [0,1]}*. Show then
that in the case of Bernoulli rewards with a uniform prior, at each time ¢t € N, p;,_; is the
joint distribution of K independent Beta distributions, where the k-th Beta distribution has
parameters (Sk(t — 1) + 1, Ny(t — 1) — Si(t — 1) + 1). In other words for any ¢t € N, the drawn
samples 0x(t) are independent with each other conditioned on F;_; and

Gk(t) ~ Beta(Sk(t - 1) + 1, Nk(t - 1) - Sk(t - 1) + 1)

2) Consider now that the prior is the improper uniform distribution! on R and Gaussian bandits
with variance o2, i.c., D = {N(p,02) | p € R}
For any ¢t € N, what is the distribution of p,_; in this case?

Solution: 1) As the prior is continuous, Bayes rule yields that the posterior is also continu-
ous. Its density p;(u) is then proportional by Bayes rule to

Ni(t)
i) o< P(Vk, Y Xp(t) = Se(t) | (Ni(t), S(t), px))
Ni (1)

Pk, 3 X(1) = Su(0) | i) Sul)o )

=T :é]w

P(Gﬂk:Nk Sk( ))

e
Il
—_

where G, n,(+) is a binomial r.v." of parameters (Ng(?), 1x), so that

Ni(t)\ s _
OC H ( t ) & (t )(1 . Hk)Nk(t) sk(t)7

which exactly corresponds to the product of independent Beta distributions as described in
the question.

2) In that case, we again have that the density of the posterior is proportional to

K N (t)
pe(w) oc [T Pk, > Xa(t) = Si(t) | Ne(t), Su(t), 1)
k=1 t=1

= H]P)( s N (2 Sk’( ))

IThis can be seen as the uniform distribution on R. It is not a proper distribution, since it is not of measure 1, but
the Bayes rule can still be applied with it.
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where G, n, (1) is a Gaussian r.v. of mean Ny(t)u, and variance Ny (t)o?. This finally gives

_ (Sp(®)—Ng (Hpg)?
e 202Ny, (t)

R
=

pe(p)

e
I

1

N ()(Sg(8) /N (t) —pp)?
e 202 ,

—-

i

1

so that the posterior corresponds to the joint distribution of K independent Gaussian vari-
ables, with mean Sy (t)/Ny(t) and variance o2 /Ny (t).
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Exercises seen in class (if time)

Exercise 8 :
1) Give an example where both

(a) Zr 5 Z,
(b) f is continuous,
but lim E[f(Zr)] # E[f(Z)].

Definition. We say that (Y7)r is uniform asymptotic integrable (uai) if

Jim i B[V [y, > 2] = 0.

2) Show that if f is continuous, Zp 4 7 and (f(Zr))r is uai, then

(a) f(Zr) € L for T large enough;

(b) f(Z) € LY

(©) E[f(Zr)] =100 E[f(Z)].

Hint: for b), use Skorokhod’s theorem.

3) Show that if (Yr)r is bounded in L? for p > 1, i.e. supE[||Y7]|’] = B < 400, then (Y7)7 is
T>1

ual.

Solution: 1) Zy = (1 = %)(50 + %&p.

2) a) definition of the limit and using that E[|| f(Z¢)|] < L +E[||f(Zr)| 1) szm)>1)-
b) Skorokhod’s theorem with Fatou lemma

c) [E[f(Zr)] = E[f(2)]| < [Elorlf(Zr))] — Ef (2)]] + [Eler(f(Zr))] — E[f (Z7)]| for ¢, the
clipping operator in [—L, L].

Going to lim sup:
lim sup [E[f(Z7)] S E[f(2)]] < Elpr(£(2))] - E[f(2)]| + limsup Elpr (£(Zr))] — E[f(Z7)]|

The first term is 0 by dominated convergence. The second is to be handled with the uai
property, by taking limsup; .

3) P > x for x large enough. In particular, VM > 0,3Ly;, Vo > Ly, 2P > Mx. Then for
such Ly,

1
E(llYz[|Lyp>za] < ME[IIYTH”HHYTH»M]
B
< —,
=M

Taking M — oo, a monotonicity argument concludes.
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Exercise 9 :
Sub-Gaussian random variables. Let X be a centered random variable in R. Show that
affirmations below satisfy the following implications chain: 1. — 2. — 3. — 4. = 5.
1. Laplace transform: for any n € R, In(E[e"*]) < #;
Concentration: for any € > 0, max {P(X >¢),P(X < —¢)} < exp(%ﬁ);
Moment condition: for any q € N*, E[X%] < 2¢!(20?)9;
Orlicz condition: Elexp(3 )] < 4;

SAE

Laplace transform: for any n € R, In(E[e™]) < —20022772~

Solution: 1) = 2) is Hoeffding inequality for a single random variable.

For 2) = 3),

= +OOIP’(]X\ > w2 )du
? oo M
< 2/0 exp(— 5 )du
+oo ul/a
= (202)q2q/0 exp(—v)v?ldv =57
= (20%)%2qT"(q)
= 2(20%)"q!

For 3) = 4), the monotone convergence theorem gives

=, X =1
]E[exp Z 202)1«;{;1 ka ]<2 Z ok
k=0 k=0
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For 4) = 5), using the fact that X is centered, we have for any n € R

 (1X)"
Elexp(n)] = E[Y_ ]
k=0 '
— (X)
=1+E]) ]
k=2
2
<1+ TEIX? exp((nX])
2 2 2 2
Ui 2,2 2 X Y aX 1
< —_ —_— —_ —_ L) = X = —
<14 Do ep(Cg) i+ D xSy
<1+ 207 eXp(202n2)E[eXp(—2)] 2 < exp(2)
- 402 2
2 2,2
< (14 80*n?) exp(207n°®) < exp ( 0o ) 1+z2z<e*

Exercise 10 :
Distribution free bound. Let B be an arbitrary set of bandits. Suppose you are given a policy
(algorithm) m = 7(T") designed for B that has the following guarantees

In(T
]E[Nk(T)] < Cy+ C%, Vv e B,VT € N,
k

for some constants C, C.
1) First, show that it directly implies the following distribution free bound:

Ry < KCy+ K+/CTIn(T).

2) Show, with a refined analysis, that we even have the following bound

Ry < /KT(Cy+ CIn(T)).

Solution: 1) Observe that Ni(T') < T, so that

ARE[Ni(T)] < Cp + min {AkT, CIn(T) }

Ay,
S Co + vV Cln(T)T
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2) The finer analysis consists in saying that

Rr =" AE[N(T)]

1

i

]~

B
Il
—

VE[Ni(T)]\/Co 4+ CIn(T)

]~

£
Il
—_

<AVCo+Cln(T), | K ZE[Nk(T)} Cauchy Schwarz

< VKT(Cy+ Cln(T)).

Exercise 11 :
Doubling trick. This exercise analyses a meta-algorithm based on the doubling trick that
converts a policy depending on the horizon to a policy with similar guarantees that does not.
Let B be an arbitrary set of bandits. Suppose you are given a policy (algorithm) = = 7(7T)
designed for B that accepts the horizon 7" as a parameter and has a regret guarantee of
<
max Kyr(n),v) <Ye(v), Vv eB.
For a fixed sequence of integers 77 < T, > T3 < ..., we define the algorithm 7 that first runs
m(T1) on [1,T1]; then runs independently w(75) on [11,T) + T3]; etc. So # runs 7(7;) on
[[Z;;ll Ty, -1 T;] and does not require a prior knowledge of 7"
1) For afixed T € N, let lpay = min{l € N* | 3¢ T, > T}. Prove that for any v € B, the
regret of T on v is at most

Zmax

Re(z,v) <Y fr(v).
=1

2) (Distribution free bound) Suppose that fr(v) < +/T. Show that for a good choice of ny, for
any v € Band T € N:

1
Ry(m,v) < VT.
T( ) = \/5 1
3) (Instance dependent bound) Suppose that fr(v) < g(v)In(7T) for some function g. Show that
with the same choice of sequence ny as in b), we can bound the regret for any v € B and T € N
as:
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4) Can you suggest a sequence of n, such that for some universal constant C' > 0, the regret of
7 can be bounded for any v € B and T' € N as:

Ry(7,v) < Cg(v)In(T).

Solution: 1) is by definition of 7.

2) is for the choice T} = 2°.

3) directly derives from the choice of n,.
4) T, = 2.
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