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Exercise sheet n°1
In this session, we consider online learning with experts (see Lecture #1) with linear losses. The
losses ωjt are in [0, 1] when not precised otherwise.

Exercise 1 :

Consider online learning with experts (see Lecture #1) with linear losses. Show that no strategy
satisfies for all sequence (ω1t, . . . , ωNt)t → ([0, 1]N)N:

T∑

t=1

N∑

j=1

pjtωjt ↑
T∑

t=1

min
k→[N ]

ωkt = o(T ).

Solution: Consider ωjt generated as i.i.d. random variables with distribution Bernoulli(1/2),
then for any algorithm E[

∑T
t=1

∑N
j=1 pjtωjt] =

T
2 . Moreover as soon as N ↓ 2,

E[
∑T

t=1 mink→[N ] ωkt] ↔
T
4 . In consequence, for any algorithm, there exists a sequence such

that
T∑

t=1

N∑

j=1

pjtωjt ↑
T∑

t=1

min
k→[N ]

ωkt ↓
T

4
.

Exercise 2 :

Consider online learning with experts (see Lecture #1) with linear losses. Assume in this exercise
that ωjt → [m,M ], with m,M → R unknown. How can we tune ε?
We consider in the following EWA with adaptive rates (εt)t:

pjt =
e↑ωt

∑t→1
s=1 εjs

∑N
k=1 e

↑ωt
∑t→1

s=1 εks
.

1) Show that if (εt) are non-increasing

1

N

N∑

j=1

pjte
↑ωtεjt ↓

1

N
ωt

ωt+1

(∑N
j=1 exp(↑εt+1

∑t
s=1 ωjs)

) ωt
ωt+1

∑N
k=1 exp

(
↑εt

∑t↑1
s=1 ωks

) .

Hint: Use the fact that x ↗↘ x
ωt

ωt+1 is convex.

2) Show that if (εt) are non-increasing, then the regret of EWA satisfies:

RT ↔
lnN

εT
+

T∑

t=1

ϑt,
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where ϑt =
N∑

j=1

pjtωjt +
1

εt
ln

(
N∑

j=1

pjte
↑ωtεjt

)
.

Hint: Multiply by 1
ωt

the logarithm of the expression obtained in 1) to make a telescopic sum
appears.

Recall the Bernstein’s inequality for a random variable X → [m,M ]:

≃ε > 0, lnE[eωX ] ↔ εE[X] +
eω(M↑m)

↑ 1↑ ε(M ↑m)

(M ↑m)2
Var (X) .

We now consider EWA with εt =
lnN∑t→1
s=1 ϑs

, with the convention that lnN
0 = +⇐.

3) Let vt =
∑N

j=1(ωjt ↑
∑N

k=1 pktωkt)
2pjt.

(a) Show that vt ↓
εt(M ↑m)

eωt(M↑m) ↑ εt(M ↑m)↑ 1
(M ↑m)ϑt.

(b) Deduce that vt ↓ 2ϑt
ωt

↑
2
3(M ↑m)ϑt.

4)

(a) Show that

(
T∑

t=1

ϑt

)2

↔

T∑

t=1

vt lnN + (M ↑m)(1 +
2

3
lnN)

T∑

t=1

ϑt.

(b) Finally, show that RT ↔ (M ↑m)
⇒
T lnN + (M ↑m)(2 + 4

3 lnN).

Solution: 1) εt ↓ εt+1 so that x ↗↘ x
ωt

ωt+1 is convex. Jensen inequality then writes for any
(xj)j

N∑

j=1

1

N
x

ωt
ωt+1

j ↓
1

N
ωt

ωt+1

(
N∑

j=1

xj)
ωt

ωt+1 .

Taking xj = p
ωt+1
ωt

jt e↑ωt+1εjt yields the result.

2) Taking logarithm of previous expression yields:

1

εt
ln

(
N∑

j=1

pjte
↑ωtεjt

)
↓ (

1

εt
↑

1

εt+1
) lnN +

1

εt+1
ln(

∑

j

exp(↑εt+1

t∑

s=1

ωjs))

↑
1

εt
ln(

∑

j

exp(↑εt

t↑1∑

s=1

ωjs)).
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Summing over t yields, by telescoping,

T∑

t=1

1

εt
ln

(
N∑

j=1

pjte
↑ωtεjt

)
↓

lnN

ε0
↑

lnN

εT+1
+

1

εT+1
ln(

∑

j

exp(↑εT+1

T∑

s=1

ωjs))↑
1

ε0
ln(N)

↓ ↑
lnN

εT
↑min

j

T∑

s=1

ωjs.

This directly yields:

T∑

t=1

ϑt ↓ ↑
lnN

εT
+
∑

j

∑

t

pjtωjt ↑min
j

T∑

s=1

ωjs)

︸ ︷︷ ︸
RT

,

which allows to conclude.

3) (a) vt is the variance of the r.v. given by X = ↑ωjt with probability pjt, and lnE[eωtX ] ↑
εtE[X] = εtϑt. This inequality is then a direct application of Bernstein inequality.
(b) For f : x ↗↘

x
ex↑x↑1 ↑

2
x , the previous inequality gives:

vt ↓
2ϑt
εt

↑ f(εt(M ↑m))(M ↑m)ϑt.

A functional study then allows to say that f(x) ↓ ↑
2
3 for x ↓ 0 (f is increasing on R+ and

f(0) = ↑
2
3).

4)(a) We have by telescoping

(
T∑

t=1

ϑt)
2 =

T∑

t=1

(
(

t∑

s=1

ϑs)
2
↑ (

t↑1∑

s=1

ϑs)
2

)

=
T∑

t=1

ϑt( ϑt︸︷︷︸
↓(M↑m) by direct bound

+2
t↑1∑

s=1

ϑs

︸ ︷︷ ︸
= lnN

ωt

)

↔

T∑

t=1

(M ↑m)ϑt + 2
ϑt
εt

lnN

↔ (M ↑m)
T∑

t=1

ϑt +
T∑

t=1

vt lnN +
2

3
ln(N)(M ↑m)ϑt,

where the last inequality comes from applying 3)(b).
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(b) For x =
∑T

t=1 ϑt, we just showed a second order inequality of the form: x2
↔ a+ bx with

a =
∑T

t=1 vt lnN and b = (M ↑m)(1 + 2
3 lnN). This then yields

x ↔
a+

⇒
a2 + 4b

2
↔ a+

⇒

b,

i.e.,
T∑

t=1

ϑt ↔

√√√√
T∑

t=1

vt lnN + (M ↑m)(1 +
2

3
lnN).

Moreover, as εt is non-increasing: lnN
ωT

↔
lnN
ωT+1

=
∑T

t=1 ϑt. So that plugging the above bound
in the inequality of question 2) yields

RT ↔ 2

√√√√
T∑

t=1

vt lnN + (M ↑m)(2 +
4

3
lnN).

We then conclude by noting that vt ↔ (M ↑m)2.

Exercise 3 :

Consider the ϖ-greedy algorithm with ϖt = min


1, (K ln(t))

1
3

t
1
3


for any t → N. Show that for a

large enough universal constant C > 0, the regret of ϖ-greedy satisfies

RT ↔ CT
2
3 (K ln(T ))

1
3 .

Hint: Bound the instantaneous regret E[!at ].

Solution: With !t =
(

K ln(t)
t

) 1
3 and c → R+,

E[!at ] =
∑

k

P(at = k)!k

↔ 2c!t +
∑

k

P(at = k,!k > 2c!t)

↔ 2c!t + ϖt +
∑

k

P(µ̂k(t↑ 1)↑ µk ↓ c!t) + P(µ↔
↑ µ̂k↑ ↓ c!t).

It just remains to bound P(µ̂k(t ↑ 1) ↑ µk ↓ c!t) in O
(
!t
K

)
. Similarly to the proof of the

instance dependent bound, we have for any xt

P(µ̂k(t↑ 1)↑ µk ↓ c!t) ↔ xtP(NR
k (t↑ 1) ↔ xt) +

e↑2c2!2
txt

2c2!2
t

.
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Taking xt =
3 ln(K

1
3 /!t)

2c2!2
t

=
t
2
3 ln( t

ln(t))
2c2(K ln(t))

2
3
, it just remains to bound

xtP(NR
k (t↑ 1) ↔ xt)

Similarly to the instance dependent proof, we can use Bernstein inequality, where here

E[NR
k (t↑ 1)] =

1

K

t↑1∑

s=1

min

(
1,

(K ln(s))
1
3

s
1
3

)
.

In particular, there exist constants c↗, c↗↗ such that when t
ln(t) ↓ c↗↗K, then E[NR

k (t ↑ 1)] ↓

c↗ t
2
3 ln(t)

1
3

K
2
3

. Moreover here, c↗ is bounded away from 0 (e.g. c↗ > 0.1), while we can take
c↗↗ as large as possible. So when t

ln(t) ↓ c↗↗K, we have for a large enough choice of c that
xt ↔

1
2E[N

R
k (t↑ 1)]. Bernstein inequality then yields

xtP(NR
k (t↑ 1) ↔ xt) ↔ E[NR

k (t↑ 1)] exp(↑
E[NR

k (t↑ 1)]

5
)

= O



t
2
3 ln(t)

1
3

K
2
3

e
↑ c↓

5
t
2
3 ln(t)

1
3

K
2
3

)





In particular, when t
2
3 ln(t)

1
3

K
2
3

↓
5 ln(t)

c↓ , this term is in O
(
!t
K

)
, so that we have the desired

instantaneous regret bound when t
ln(t) ↓ c↗↗K for a large enough c↗↗ (recall that c↗ is bounded

away from 0). We can then conclude by noting that if T
ln(T ) ↔ c↗↗K,

RT ↔ T ↔ T
2
3T

1
3 ↔ T

2
3 (c↗↗K ln(T ))

2
3 .

If instead T
ln(T ) > c↗↗K, let ϱ = inf{t | t

ln(t) ↓ c↗↗K}. It comes

RT ↔ ϱ ↑ 1 +
T∑

t=ϖ

E[!at ]

↔ ϱ
2
3 (K ln(ϱ))

1
3 +O

(
T∑

t=ϖ

!t

)

= O

(
T

2
3 (K ln(T ))

1
3

)
.

Exercise 4 :

Concentration for sequences of random length. Let X1, X2, . . . be a sequence of indepen-
dent standard Gaussian random variables defined on probability space (”,F ,P). Suppose that
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T : ” ↘ {1, 2, 3, . . .} is another variable and let µ̂T =
∑T

t=1
Xt
T be the empirical mean based on

T samples.

1) Show that if T is independent from Xt for all t, then for any ϑ → (0, 1)

P
(
µ̂T ↓


2 ln(1/ϑ)

T

)
↔ ϑ.

2) Now relax the assumption that T is independent from (Xt)t. Let Et = 1T=t and Ft =
ς(X1, . . . , Xt) be the ς-algebra generated by the first t samples. Let ϑ → (0, 1) and show there
exists a random variable T such that for all t, Et is Ft-measurable and

P
(
µ̂T ↓


2 ln(1/ϑ)

T

)
= 1.

Hint: You can use the law of the iterated logarithm, which says if X1, X2, . . . is a sequence of
independent and identically distributed random variables with zero mean and unit variance, then

lim sup
n↘≃

∑n
t=1 Xt

⇒
2n ln lnn

= 1 almost surely.

3) What is the relation between the above inequality and our concentration lemma for the
empirical means in bandits problems? Do 2) and our lemma contradict? Why?

Solution: 1) This is a consequence of Hoe!ding inequality, when conditioning on the values
of T .

2) Define T = {t → N | µ̂T ↓


2 ln(1/ϑ)

t }. Thanks to the law of iterated algorithm, it is
properly defined (T < +⇐ almost surely) and satisfies the point 3).

3) Although T corresponds to Nk(T ) in our concentration lemma, it does not contradict
with it. The reason is that Nk(T ) is almost surely bounded by T , and the failure probability
is bounded by a term scaling with T . Allowing Nk(T ) to go to possibly infinite values thus
makes the concentration irrelevant.

Exercise 5 :

Phased SE. Consider the following phased Successive Eliminations algorithm parameterized by
a > 1.
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Algorithm: Phased Successive Eliminations
input: T , a ↓ 1

K ⇑ [K]
ω ⇑ 0
while Card(K) > 1 do

pull all arms in K ⇓aε⇔ times
for all k → K such that µ̂k +


2 lnT
Nk(T ) ↔ maxi→K µ̂i ↑


2 lnT
Ni(T ) do K ⇑ K \ {k}

ω ⇑ ω+ 1
repeat pull only arm in K until t = T

1) Show a regret bound similar to Successive Eliminations algorithm.

2) What is the role played by a?

Solution: 1) Similar proof technique, but E[Nk(T )] is now bounded by

min


n =

εk∑

ε=0

⇓aε⇔ | n ↓
32 lnT

!2
k

and ωk → N

.

By noting nε =
∑ε

i=0⇓a
i
⇔, we have nε < nε+1 ↔ (a + 1)nε + 1. This then implies with the

above bound on E[Nk(T )] that

E[Nk(T )] ↔ 32(a+ 1)
lnT

!2
k

+ 1.

This allows to conclude.

2) a plays a trade-o! between

• the incurred regret,

• the frequence at which we need to update the policy (and number of arm switches).

Exercise 6 :

Adapting to reward variance. Let X1, . . . , XN be a sequence of i.i.d. random variables
with mean µ, variance ς2 and bounded support so that Xt → [0,M ] almost surely. Define the
estimators

µ̂N =
1

N

N∑

t=1

Xt

ς̂2 =
1

N

N∑

t=1

(µ̂↑Xt)
2.
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We admit in the following the empirical Bernstein inequality:

P
(
|µ̂N ↑ µ| ↓


2ς̂2

N
ln(3/ϑ) +

3M

N
ln(3/ϑ)

)
↔ ϑ.

1) Show that the Bernstein inequality in the course implies here

P
(
|µ̂N ↑ µ| ↓


2ς2

N
ln(2/ϑ) +

2M

3N
ln(2/ϑ)

)
↔ ϑ

Comment on the di!erences between the two above Bernstein inequalities.

2) Show that ς̂2 = 1
N

∑N
t=1(Xt ↑ µ)2 ↑ (µ̂N ↑ µ)2.

3) Is ς̂2 an unbiased estimator of ς2? If not, can we easily make it unbiased?

4) Show that

P
(
ς̂2

↓ ς2 +


2M2ς2

N
ln(1/ϑ) +

2M2

3N
ln(1/ϑ)

)
↔ ϑ.

Hint: Use Bernstein inequality of 1).

5) (Hard) Consider a bandit setting with K arms, bounded rewards Xk(t) → [0,M ] and the
variance of the k-th arm is ς2

k. Design a policy that depends on M , but does not need to know
ςi a priori, such that there exists a universal constant C > 0 with

RT ↔ C
∑

k,!k>0


!k + (M +

ς2
i

!i
) lnT


.

Hint: Without the stack of rewards model, the empirical Bernstein inequality can be extended
(up to some changes) to cases where N is a random variable.

Solution: 1) In the course, the Bernstein inequality reads (after rescaling by N
M ) as

P (|µ̂T ↑ µ| ↓ ϖ) ↔ 2 exp(↑
Nϖ2

2ς2 + 2
3Mϖ

).

Taking ϖ =


2ϱ2

N ln(2/ϑ) + 2M
3N ln(2/ϑ) allows to conclude. The main di!erence is the one we

admit holds for the estimated variance, while the one we just proved only holds for the true
variance (which is generally unknown).
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2) By definition

ς̂2 =
1

N

N∑

t=1

(µ̂N ↑Xt)
2

=
1

N

N∑

t=1

X2
t ↑ 2µ̂2

N + µ̂2
N

=
1

N

N∑

t=1

(
X2

t ↑ 2Xt + µ2
)
↑

(
µ̂2
N + µ2

↑
2

N

N∑

t=1

Xtµ

)

=
1

N

N∑

t=1

(Xt ↑ µ)2 ↑ (µ̂N ↑ µ)2.

3) Obviously, E[ς̂2] < E[(Xt ↑ µ)2], so it is biased. Actually we have

E[ς̂2] = E[(Xt ↑ µ)2]↑ E[(µ̂N ↑ µ)2]

= E[(Xt ↑ µ)2]↑ Var (µ̂N)

= E[(Xt ↑ µ)2]↑
1

N
Var (Xt) variance of sum of independent variables is sum of variances

=
N ↑ 1

N
Var (Xt) .

N
N↑1 ς̂

2 is an unbiased estimator.

4) This is a consequence of the Bernstein inequality 1) and the fact that Var ((Xt ↑ µ)2) ↔
M2ς2.

5) The algorithm to propose a the variant of UCB that pulls at each time step

at → argmax
k

µ̂k(t↑ 1) +


2ς̂2

k(t↑ 1)

Nk(t)
ln(3t3) +

3M

Nk(t)
ln(3t3)

︸ ︷︷ ︸
:=Bk(t↑1)

.

We can show similarly to the course that for each time step t,

P
(
|µ̂k(t)↑ µk| ↓


2ς̂2

k(t)

Nk(t)
ln(3/ϑ) +

3M

Nk(t)
ln(3/ϑ)

)
↔ tϑ

P




ς̂2
k(t) ↓ ς2

k +


2M2ς2

k

Nk(t)
ln(1/t3) +

2M2

3Nk(t)
ln(1/t3)

︸ ︷︷ ︸
:=Sk(t)




↔

1

t2
.
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So that here for ϑ = t3, we have for the good event

Ek,t =


µ̂k(t)↑ µk ↔ Bk(t) and µ↔

↑ µ̂k↑(t) ↔ Bk(t)

and ς̂2
k(t) ↔ ς2

k + Sk(t)



and P(Ek,t) ↓ 1↑ 2
t2 . In particular if Ek,t holds, we pull the arm k at time t+1 if 2Bk(t) ↓ !k

(similar to UCB proof). Now, we bound Bk(t) using 4) under the event Ek,t.

Bk(t) =


2ς̂2

k(t)

Nk(t)
ln(3t3) +

3M

Nk(t)
ln(3t3)

↔


2ς2

k + 2Sk(t)

Nk(t)
ln(3t3) +

3M

Nk(t)
ln(3t3)

↔


2ς2

k

Nk(t)
ln(3t3) +


2Sk(t)

Nk(t)
ln(3t3) +

3M

Nk(t)
ln(3t3).

Note that


2Sk(t)

Nk(t)
ln(3t3) ↔

√√√√ 2

Nk(t)


2M2ς2

k

Nk(t)
ln(3t3) ln(3t3) +


4M2

3Nk(t)2
ln(3t3)2

=

√√√√2M ln(3t3)

Nk(t)


2ς2

k

Nk(t)
ln(3t3) +

2M
⇒
3Nk(t)

ln(3t3)

↔


ς2
k

2Nk(t)
+

(1 + 2⇐
3
)M

Nk(t)
ln(3t3)

x+ y

2
↓

⇒
xy.

So that there exists a constant C > 0 such that

Bk(t) ↔ C


ς2
k

Nk(t)
ln(3t3) + C

M

Nk(t)
ln(3t3).

As a consequence, if Ek,t holds, at+1 = k implies that

2C


ς2
k

Nk(t)
ln(3t3) + 2C

M

Nk(t)
ln(3t3) ↓ !k.
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This is a polynomial inequality, which yields for a = 2CM , b = 2Cς2
k and c = !k:


ln(3t3)

Nk(t)
↓

b

2a

(
1 +

4ac

b2
↑ 1

)

↓
b

2a
min


ac

b2
,

⇒
ac

b


⇒
1 + z ↑ z ↓ min(

z

4
,

⇒
z

2
)

=
1

2
min


c

b
,


c

a


.

This directly implies for a large enough constant C ↗

Nk(t) ↔ C ↗ ln(3t3)max


M

!k
,
ς2
k

!2
k



↔ C ↗ ln(3t3)


M

!k
+

ς2
k

!2
k


.

From there, we can conclude similarly to the end of the proof in the course for UCB.

Exercise 7 :

This exercise studies the celebrated Thompson sampling algorithm, described below.
In words, Thompson sampling starts with a prior distribution ppp0 distribution on the (mean)
parameters of the bandits instance and at each round t, it draws random samples φk(t) from the
posterior distribution pppt↑1 on the instance parameters at time t↑ 1, which is defined as

pppt↑1(A) = P

(µ1, . . . , µK) → A | Ft↑1


for any A → B(R), (1)

where Ft↑1 = ς


U1, Xa1(1), U2, Xa2(2), . . . Xat→1(t ↑ 1)


and the Us are random variables uni-

formly drawn in [0, 1], that are independent with all other variables.

Algorithm: Thompson sampling
input: prior distribution ppp0
for t = 1, . . . , T do

Sample ω(t) ↖ pppt↑1

Pull at → argmaxk→[K] φk(t) // Ties broken arbitrarily
Update pppt as the posterior distribution of the parameters, following Bayes rule.

We note for each time t → N and arm k → [K]:

Sk(t) =
t∑

s=1

Xk(s)1as=k.
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1) Consider an instance of Bernoulli bandits, i.e., D = {Bernoulli(µ) | µ → [0, 1]}K . Show then
that in the case of Bernoulli rewards with a uniform prior, at each time t → N, pppt↑1 is the
joint distribution of K independent Beta distributions, where the k-th Beta distribution has
parameters (Sk(t ↑ 1) + 1, Nk(t ↑ 1) ↑ Sk(t ↑ 1) + 1). In other words for any t → N, the drawn
samples φk(t) are independent with each other conditioned on Ft↑1 and

φk(t) ↖ Beta(Sk(t↑ 1) + 1, Nk(t↑ 1)↑ Sk(t↑ 1) + 1).

2) Consider now that the prior is the improper uniform distribution1 on R and Gaussian bandits
with variance ς2, i.e., D = {N (µ, ς2) | µ → R}K .
For any t → N, what is the distribution of pppt↑1 in this case?

Solution: 1) As the prior is continuous, Bayes rule yields that the posterior is also continu-
ous. Its density pt(µµµ) is then proportional by Bayes rule to

pt(µµµ) ↙ P(≃k,
Nk(t)∑

t=1

Xk(t) = Sk(t) | (Nk(t), Sk(t), µk)k)

=
K

k=1

P(k,
Nk(t)∑

t=1

Xk(t) = Sk(t) | Nk(t), Sk(t), µk)

=
K

k=1

P(Gµk,Nk(t) = Sk(t)),

where Gµk,Nk(t) is a binomial r.v. of parameters (Nk(t), µk), so that

pt(µµµ) ↙
K

k=1


Nk(t)

Sk(t)


µSk(t)
k (1↑ µk)

Nk(t)↑Sk(t),

which exactly corresponds to the product of independent Beta distributions as described in
the question.
2) In that case, we again have that the density of the posterior is proportional to

pt(µµµ) ↙
K

k=1

P(k,
Nk(t)∑

t=1

Xk(t) = Sk(t) | Nk(t), Sk(t), µk)

=
K

k=1

P(Gµk,Nk(t) = Sk(t)),

1This can be seen as the uniform distribution on R. It is not a proper distribution, since it is not of measure 1, but
the Bayes rule can still be applied with it.
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where Gµk,Nk(t) is a Gaussian r.v. of mean Nk(t)µk and variance Nk(t)ς2. This finally gives

pt(µµµ) ↙
K

k=1

e
↑ (Sk(t)→Nk(t)µk)2

2ε2Nk(t)

=
K

k=1

e↑
Nk(t)(Sk(t)/Nk(t)→µk)2

2ε2 ,

so that the posterior corresponds to the joint distribution of K independent Gaussian vari-
ables, with mean Sk(t)/Nk(t) and variance ς2/Nk(t).
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Exercises seen in class (if time)
Exercise 8 :

1) Give an example where both

(a) ZT
L
↘ Z,

(b) f is continuous,
but lim

T↘≃
E[f(ZT )] ∝= E[f(Z)].

Definition. We say that (YT )T is uniform asymptotic integrable (uai) if

lim
L↘≃

lim
T↘≃

E[′YT′1⇒YT ⇒>L] = 0.

2) Show that if f is continuous, ZT
L
↘ Z and (f(ZT ))T is uai, then

(a) f(ZT ) → L1 for T large enough;
(b) f(Z) → L1;
(c) E[f(ZT )] ↘T↘≃ E[f(Z)].

Hint: for b), use Skorokhod’s theorem.

3) Show that if (YT )T is bounded in Lp for p > 1, i.e. sup
T⇑1

E[′YT′
p] = B < +⇐, then (YT )T is

uai.

Solution: 1) ZT = (1↑ 1
T )ϑ0 +

1
T ϑT .

2) a) definition of the limit and using that E[′f(ZT )′] ↔ L+ E[′f(ZT )′1⇒f(ZT )⇒>L].
b) Skorokhod’s theorem with Fatou lemma
c) |E[f(ZT )]↑ E[f(Z)]| ↔ |E[↼L(f(ZT ))]↑ E[f(Z)]| + |E[↼L(f(ZT ))]↑ E[f(ZT )]| for ↼L the
clipping operator in [↑L,L].
Going to lim sup:

lim sup
T

|E[f(ZT )]↑ E[f(Z)]| ↔ |E[↼L(f(Z))]↑ E[f(Z)]|+ lim sup
T

E[↼L(f(ZT ))]↑ E[f(ZT )]|.

The first term is 0 by dominated convergence. The second is to be handled with the uai
property, by taking lim supL.
3) xp

∞ x for x large enough. In particular, ≃M > 0, ∈LM , ≃x ↓ LM , xp
↓ Mx. Then for

such LM ,

E[′YT′1⇒YT ⇒>LM
] ↔

1

M
E[′YT′

p1⇒YT ⇒>LM
]

↔
B

M
.

Taking M ↘ ⇐, a monotonicity argument concludes.
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Exercise 9 :

Sub-Gaussian random variables. Let X be a centered random variable in R. Show that
a"rmations below satisfy the following implications chain: 1. =∋ 2. =∋ 3. =∋ 4. =∋ 5.

1. Laplace transform: for any ε → R, ln(E[eωX ]) ↔ ϱ2ω2

2 ;

2. Concentration: for any ϖ > 0, max {P(X ↓ ϖ),P(X ↔ ↑ϖ)} ↔ exp(↑ς2

2ϱ2 );
3. Moment condition: for any q → N↔, E[X2q] ↔ 2q!(2ς2)q;
4. Orlicz condition: E[exp( X2

4ϱ2 )] ↔ 4;

5. Laplace transform: for any ε → R, ln(E[eωX ]) ↔ 20ϱ2ω2

2 .

Solution: 1) =∋ 2) is Hoe!ding inequality for a single random variable.

For 2) =∋ 3),

E[X2q] =

 +≃

0

P(X2q > u)du

=

 +≃

0

P(|X| > u
1
2q )du

↔ 2

 +≃

0

exp(
↑u1/q

2ς2
)du

= (2ς2)q2q

 +≃

0

exp(↑v)vq↑1dv v =
u1/q

2ς2

= (2ς2)q2q#(q)

= 2(2ς2)qq!

For 3) =∋ 4), the monotone convergence theorem gives

E[exp(X
2

4ς2
)] = E[

≃∑

k=0

X2k

(2ς2)kk!

1

2k
] ↔ 2

≃∑

k=0

1

2k
= 4.
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For 4) =∋ 5), using the fact that X is centered, we have for any ε → R

E[exp(εX)] = E[
≃∑

k=0

(εX)k

k!
]

= 1 + E[
≃∑

k=2

(εX)k

k!
]

↔ 1 +
ε2

2
E[X2 exp(|εX|)]

↔ 1 +
ε2

2
exp(2ς2ε2)E[X2 exp(

X2

8ς2
)] inf

a
(
ε2

2a
+

aX2

2
) = ε|X|, a =

1

4ς2

↔ 1 + 2ς2ε2 exp(2ς2ε2)E[exp(X
2

4ς2
)] z ↔ exp(

z

2
)

↔ (1 + 8ς2ε2) exp(2ς2ε2) ↔ exp


20ς2ε2

2


1 + z ↔ ez.

Exercise 10 :

Distribution free bound. Let B be an arbitrary set of bandits. Suppose you are given a policy
(algorithm) ↽ = ↽(T ) designed for B that has the following guarantees

E[Nk(T )] ↔ C0 + C
ln(T )

!2
k

, ≃⇀ → B, ≃T → N,

for some constants C0, C.

1) First, show that it directly implies the following distribution free bound:

RT ↔ KC0 +K

CT ln(T ).

2) Show, with a refined analysis, that we even have the following bound

RT ↔


KT (C0 + C ln(T )).

Solution: 1) Observe that Nk(T ) ↔ T , so that

!kE[Nk(T )] ↔ C0 +min


!kT,

C ln(T )

!k



↔ C0 +


C ln(T )T .
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2) The finer analysis consists in saying that

RT =
K∑

k=1

!kE[Nk(T )]

↔

K∑

k=1

min


!kE[Nk(T )], C0 +

C ln(T )

!k



↔

K∑

k=1


E[Nk(T )]


C0 + C ln(T )

↔


C0 + C ln(T )

√√√√K
K∑

k=1

E[Nk(T )] Cauchy Schwarz

↔


KT (C0 + C ln(T )).

Exercise 11 :

Doubling trick. This exercise analyses a meta-algorithm based on the doubling trick that
converts a policy depending on the horizon to a policy with similar guarantees that does not.
Let B be an arbitrary set of bandits. Suppose you are given a policy (algorithm) ↽ = ↽(T )
designed for B that accepts the horizon T as a parameter and has a regret guarantee of

max
1↓t↓T

Rt(↽(n), ⇀) ↔ fT (⇀), ≃⇀ → B.

For a fixed sequence of integers T1 < T2 > T3 < . . ., we define the algorithm ↽̃ that first runs
↽(T1) on !1, T1"; then runs independently ↽(T2) on !T1, T1 + T2"; etc. So ↽̃ runs ↽(Ti) on
!
∑i↑1

j=1 Tj,
∑i

j=1 Tj" and does not require a prior knowledge of T .

1) For a fixed T → N, let ωmax = min{ω → N↔
|
∑ε

i=1 Ti ↓ T}. Prove that for any ⇀ → B, the
regret of ↽̃ on ⇀ is at most

RT (↽̃, ⇀) ↔
εmax∑

ε=1

fTϑ
(⇀).

2) (Distribution free bound) Suppose that fT (⇀) ↔
⇒
T . Show that for a good choice of nε, for

any ⇀ → B and T → N:
RT (↽̃, ⇀) ↔

1
⇒
2↑ 1

⇒

T .

3) (Instance dependent bound) Suppose that fT (⇀) ↔ g(⇀) ln(T ) for some function g. Show that
with the same choice of sequence nε as in b), we can bound the regret for any ⇀ → B and T → N
as:

RT (↽̃, ⇀) ↔ g(⇀)
ln(T )2

2 ln(2)
.
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4) Can you suggest a sequence of nε such that for some universal constant C > 0, the regret of
↽̃ can be bounded for any ⇀ → B and T → N as:

RT (↽̃, ⇀) ↔ Cg(⇀) ln(T ).

Solution: 1) is by definition of ↽̃.
2) is for the choice Tε = 2ε.
3) directly derives from the choice of nε.
4) Tε = 22

ϑ .
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