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simple algorithm clearly reparating explication from exploitation .
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Roof : Similarly to Greedy in the full info setting :

For m=1
....

N let E(m) be the deterministic time where h is pulled
for the n-th kime .

By Hoffling inequality :
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plugging the value of N :
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↳mark: · Again wh can get a distribution free boud realing as

0(11 /23 -43) and the instance dependent vercion requires knowledge of D

Two main drawbacke of these methods :

· they equire knowledge of A .

· they scale in
z

Ca+* in distribution-free bounds)

This is because they use auniform exploration : eacharm is explored the

exploration rounds depend
same amount of time .

↓ on pastobservations .

A better strategy is to use an adaptive exploration : better
arms an explaced

mar often .
theidea is

that a very
bad arm is quicker to detect as

sub- optimal .



Successive Eliminations
Let 1=
While Card (* I 1 :

Pull each arm in I once

For kGF :

if per + et Mech-t then F=- (k)

Pull the only am in i rental theend
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We now bound IXNa(11s-

Note that when a holds
, we always hale :
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For a suboptimalarmk let N be the smallest integen such that
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Finally :
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Remontes · Si assumes a prior knowledge of T.

assaming T is not to restrictive in practice as we can as the doubing
Kick see excuse ression #2

· we can easily get a better constant than 32

· This instance dependant bound also implies a distribution

free bound o(+**em see excite session #2 .

Upper Confidence Bound (UCB(
Pull each aum once

For 558+1 :
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. Gody , But with UCB scous

-> no undinestimation of Me (with high probability)
· No prion knowledge of # .

Theorem
For
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En particulari
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· The assent instance dependent bound is

nearly optimal .

We'll see in exce session that wa can



be made optimal with respect to the lower bound we

are

going
to prove next week

.

· VCBis said une the optimism in theface of uncertainty
principle : aiming at the best statistically possible eemaic

e · ood statgy here .

sag

· Previous algorithme/results hold for independent bounded uwards
XaChe To-

They can be easily extended to independent ramb -Gaussian
rewards

,
as similar concentration bounds hold

.

eg
UCB scones become

Malto+Ne same regut bounds vercaled by et

What if wis unknown I
can be estimated see exercise

session #3 .


