Asympt. Upper bound

MK

More realistic dynamic model: first logarithmic regret algorithm

Observation: coll. indicator \(\eta_k(t) \in \{0,1\} \) → bit sent from one player to another

Communication possible between players

Algorithm 1: SIC-MMAB

Initialization phase: estimate \(M \) and player rank \(j \) in time \(c(K \log T) \) for \(p = 1, ..., \infty \) do

Exploration phase: explore each active arm \(2^p \) times without collision

Communication phase: players exchange statistics of arms using collisions

Eliminate suboptimal arms

Attribute optimal arms to players (who enter exploitation phase)

End

Exploitation phase: pull attributed arm until \(T \)

Communication protocol

When player \(i \) sends stats of arm \(k \) to player \(j \):

- Pull arm \(j \) to send 1 bit (collision)
- Pull arm \(i \) to send 0 bit (no collision)
- Send quantized empirical mean in binary

For \(2^p \) exploration rounds, communicate in \(p \rightarrow \) sublogarithmic comm. regret

Regret of SIC-MMAB

\[
 \mathbb{E}[R_T] \leq \sum_{k>M} \log(T) \frac{MK \log(T)}{M^2 \mu_k} + MK \log(T) \frac{MK \log(T)}{M^2 \mu_k} + MK \log(T) \frac{MK \log(T)}{M^2 \mu_k}
\]

Contradiction with the lower bound

Centralized lower bound

\[
 \sum_{k>M} \log(T) \frac{MK \log(T)}{M^2 \mu_k}
\]

Decentralized lower bound

\[
 M \sum_{k>M} \log(T) \frac{MK \log(T)}{M^2 \mu_k}
\]

SIC-MMAB: static with collision sensing

Toward a realistic model

Unrealistic communication protocols → loophole in current model
Which assumption did go wrong?

- Collision sensing: No! still send a bit in \(\log\frac{T}{\Delta} \) rounds without it
- Synchronisation: Yes! Communication possible because players know when to talk to each other

Synchronisation: unrealistic assumption leading to hacking algorithms
Let’s remove it → dynamic model

Algorithm 2: DYN-MMAB

Exploration phase: pull \(k \sim \mathcal{U}(M) \)

Update occupied arms and queue of arms to exploit

if \(r_j(t) > 0 \) and \(k = \text{arm to exploit} \) then

[Enter exploitation phase]

end

Exploitation phase: pull exploited arm until \(T \)

How does it work?

Do not estimate \(\mu_k \) but \(\gamma \mu_k \) where \(\gamma \gg \mathcal{P} \) (no collision)

Still distinguish optimal from suboptimal arms

What if another player exploits \(k \)?

- either \(r_j \) → 0 quickly and arm \(k \) becomes suboptimal
- or too many \(\gamma \)s in a row \(\implies k \) is occupied

Regret of DYN-MMAB

\[
 \mathbb{E}[R_T] \leq \frac{MK \log(T)}{M^2 \mu_k} + \frac{MK \log(T)}{M^2 \mu_k} + \frac{MK \log(T)}{M^2 \mu_k}
\]

Summary

- Synchronisation → communication through collisions in MMAB
- Contradicts previous lower bounds
- Synchronisation is unrealistic and a loophole in the model
- More realistic dynamic model: first logarithmic regret algorithm

Multiplier bandits model

Motivation	cognitive radio networks
Framework	\(K \) arms, \(M \leq K \) players. At each \(t \in T \), player \(j \) pulls \(\pi(t) \)
Reward	\(\pi(t) := \mathbb{X}_{\pi(t)}(1 - \delta_{\pi(t)}) \)
Decentralized	no information exchange between players
Observations	\(\mathbb{X}(t) \in \{0,1\} \text{ i.i.d. with } \mathbb{E}[\mathbb{X}(t)] = \mu_k \)
Synchro models	Static: any player plays for \(t = 1, \ldots, T \) Dynamic: player \(j \) plays for \(t = 1 + \tau_j, \ldots, T \)
Goal	with \(\mathbb{M}(t) \) set of players at time \(t \), minimize regret
\(R_T := \sum_{t=1}^{T} \sum_{j=1}^{M} \mu_k(t) - \mathbb{X}_j(t) \sum_{j=1}^{M} \pi(t) \)	
Notations	\(\mu_1 \geq \cdots \geq \mu_M \) and \(\Delta_M := \min_{k=1,\ldots,M} (\mu_k - \mu_{k+1}) \)

State of the art bounds

<table>
<thead>
<tr>
<th>Setting</th>
<th>Prior knowledge</th>
<th>Asympt. Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized Multiplayer</td>
<td>(M)</td>
<td>(\sum_{k>M} \log(T) \frac{MK \log(T)}{M^2 \mu_k}) [3]</td>
</tr>
<tr>
<td>Decentralized, Col. Sensing</td>
<td>(\mu_k^{-1} \Delta_{k(M+1)})</td>
<td>(\sum_{k>M} \log(T) \frac{MK \log(T)}{M^2 \mu_k}) [4]</td>
</tr>
<tr>
<td>Decentralized, Coll. Sensing</td>
<td>(\mu_k^{-1} \Delta_{k(M+1)})</td>
<td>(\sum_{k>M} \log(T) \frac{MK \log(T)}{M^2 \mu_k}) [4]</td>
</tr>
<tr>
<td>Dec., Coll. Sensing, Dynamic</td>
<td>(\Delta_{k(M+1)})</td>
<td>(\sum_{k>M} \log(T) \frac{MK \log(T)}{M^2 \mu_k}) [4]</td>
</tr>
<tr>
<td>Dec., No Sensing, Dynamic</td>
<td>(\Delta_{k(M+1)})</td>
<td>(\sum_{k>M} \log(T) \frac{MK \log(T)}{M^2 \mu_k}) [4]</td>
</tr>
</tbody>
</table>

Our results in red.

References

